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Foreword
The ACS Symposium Series was first published in 1974 to provide a

mechanism for publishing symposia quickly in book form. The purpose of
the series is to publish timely, comprehensive books developed from the ACS
sponsored symposia based on current scientific research. Occasionally, books are
developed from symposia sponsored by other organizations when the topic is of
keen interest to the chemistry audience.

Before agreeing to publish a book, the proposed table of contents is reviewed
for appropriate and comprehensive coverage and for interest to the audience. Some
papers may be excluded to better focus the book; others may be added to provide
comprehensiveness. When appropriate, overview or introductory chapters are
added. Drafts of chapters are peer-reviewed prior to final acceptance or rejection,
and manuscripts are prepared in camera-ready format.

As a rule, only original research papers and original review papers are
included in the volumes. Verbatim reproductions of previous published papers
are not accepted.

ACS Books Department
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Preface
This American Chemical Society (ACS) Symposium series text is based on

the full day symposium entitled, “The Birth of Chemometrics - In Honor and
Memory of Bruce Kowalski,” that was held at FACSS in Milwaukee, WI (October
2013) and cosponsored by the Division of Computers and Chemistry (COMP) of
the American Chemical Society. Bruce Kowalski is recognized by the scientific
community as the founder of the field of chemometrics. This symposium Series
text is a follow up to the Symposium Series Volume 52 (Chemometrics: Theory
and Application), edited by Bruce Kowalski and is based on the symposium
organized by Bruce at the National ACS meeting in San Francisco in 1976, which
was also cosponsored by COMP.

The 14 contributors to the current volume (see Table of Contents) are all
leaders in the field of chemometrics and have strong personal recollections
of Bruce as a man who was a catalyst able to bring together creative minds.
All major areas in the field are well represented in this collection: pattern
recognition, library searching, multivariate calibration, multivariate curve
resolution, variable selection, data fusion, calibration transfer, environmental
chemometrics, forensics, and biological and mixture analysis. Many chapters
have a link to previous work done by Bruce and will serve as a retrospective to
the career of Bruce Kowalski, who believed that a rational approach was needed
to improve both the quality of measurements and to extract information from
them. Bruce believed that chemometrics would serve as a guiding theory for
analytical chemistry and believed that it would be used both to optimize existing
analytical methodology and to direct researchers attempting to construct better
tools. Each chapter in this text demonstrates the progress that has been made in
the field towards the realization of Bruce Kowalski’s goal.

The first chapter of the text entitled, “Chemometrics and Bruce: Some Fond
Memories,” is written by Svante Wold and describes the history of empirical and
semi-empirical “data driven, soft, analogy” models for the design of experiments
and the analysis of the resulting data. This history is marked by a number of
influential events inspired and encouraged by Bruce and is illustrated by examples
of method development driven by necessity to solve specific problems and leading
to data driven soft models, which have been shown to be superior to the classical
first principles approaches to the same problems.

Although Bruce is recognized for his accomplishments in attracting the
talents of chemists and engineers, he also showed enormous vision in his efforts
to assimilate statisticians and mathematicians into the field of chemometrics.
Bill Rayens, a mathematician turned statistician, describes his journey from
statistician to chemometrician as a result of his interactions with Bruce Kowalski

ix
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in Chapter Two. Chapter Three, written by Peter Wentzell, describes the evolution
of maximum likelihood principal component analysis and related techniques
from a personal perspective highlighting the author’s collaboration with Bruce
Kowalski.

Chapter Four focuses on Bruce Kowalski as a mentor, innovator and
pioneer through the solution to a problem involving dioxin involving dioxin
concentrations in excess of background levels in the harbor of Port Angeles in
Western Washington. A mixture analysis study undertaken by Scott Ramos using
pattern recognition and multivariate curve resolution methods to understand the
nature of the contamination indicated several characteristic patterns that could
be associated with identifiable source materials. The work in this study was
performed at Infometrix, a software company founded by Bruce Kowalski in
1978.

Chapters Five and Six focus on multivariate curve resolution. In Chapter
Five, Roma Tauler provides an exhaustive review of multivariate curve resolution,
which is the generic denomination for a family of methods used to solve the
ubiquitous problem of mixture analysis. Tauler became interested in curve
resolution while visiting Bruce in the late 1980’s. Phil Hopke in Chapter Six
describes some recent developments in multivariate curve resolution related to the
problem of source apportionment in air monitoring of atmospheric particulates.

Recent developments in the field of pattern recognition are delineated by
Steve Brown and Barry Lavine in Chapters Seven and Eight. In Chapter Seven,
hierarchical class modeling approach in which samples receive more than one
class label are compared to traditional “flat” classification for the modeling of
hierarchical geospatial data, a problem that relates to those studied by Brown and
Kowalski in the late 1970’s. In Chapter Eight, pattern recognition techniques are
applied to the problem of searching the infrared spectral libraries of the Paint
Data Query (PDQ) automotive paint database to differentiate between similar IR
spectra and to determine the assembly plant, model, and line of an automotive
vehicle from a clear coat paint smear recovered at a crime scene where damage to
a vehicle and/or injury or death to a pedestrian has occurred. This, too, echoes
work started by Brue in early studies of pattern recognition, but his focus was on
paper.

Chapters Nine, Ten, and Eleven focus on recent developments in multivariate
calibration, another area where Bruce contributed significantly. Model selection
is usually limited to the evaluation of cross validation prediction errors. However,
there are advantages of using multiple criteria for model selection, which is
discussed by John Kalivas in Chapter Nine. Chapter Ten focuses on the solution
to the variable selection problem in PLS and PCR using adaptive regression
subspace elimination approach pioneered by Karl Booksh. The essentials of
multivariate calibration transfer are discussed by Jerry Workman in Chapter
Eleven.

The remaining three chapters of this text focus on biological applications of
chemometrics. The field of proteomics and metabolomics from the standpoint
of chemometrics is reviewed by Jeff Cramer in Chapter Twelve. Rene Jiji in
Chapter Thirteen explores the application of data fusion for spectroscopic data
to improve predictions of protein secondary structure. The remaining chapter

x
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by Frank Vogt summarizes nonlinear modeling of microalgal biomasses for the
purpose of exploring the impact of pollutants on our environment.

This text will be of interest to individuals who are interested in modeling
data. Interest in modeling data continues to grow with the emergence of new areas
such as computational statistics, business intelligence, big data, and analytics. In
chemistry, modeling of data has taken a different path as it has become integrated
into the field of analytical chemistry. Because chemometrics is not well understood
by chemists, this text should prove beneficial and be of great interest to researchers
who need to take advantage of techniques such as principal component analysis,
partial least squares, linear discriminant analysis and outlier analysis in their work.

This book allows the reader quick access to different areas of current
research in chemometrics featured in the literature by providing key references
and viewpoints not found elsewhere. This text also highlights changes that have
occurred in the field since its origins in the mid-1970’s and will serve as a report
on the current state of the art of the field of chemometrics. The editors of this text
believe that it will be of interest not only to physical scientists and engineers but
also to statisticians and informatics types who have come to the realization that
chemometrics is worth a second look.

Barry K. Lavine
Oklahoma State University
Department of Chemistry
Stillwater, Oklahoma 74078

Steven D. Brown
University of Delaware
Department of Chemistry and Biochemistry
Newark, Delaware 19716

Karl S. Booksh
University of Delaware
Department of Chemistry and Biochemistry
Newark, Delaware 19716
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Editors’ Biographies

Barry K. Lavine

Barry K. Lavine received his PhD from Pennsylvania State University in
1986. His thesis advisor was Peter C. Jurs. In the same year, Lavine became a
faculty member in the Chemistry Department at Clarkson University where he
taught and performed research in analytical chemistry and chemometrics for 18
years. In 2004, Lavine moved to Oklahoma State University (OSU) where he
continues to be active in both teaching and research. Lavine’s publications include
some 150 publications, chapters, and review articles as well as three books. His
research encompasses applications of multivariate data analysis to a wide range of
problems in the areas of analytical and forensic chemistry including automotive
paint analysis, vibrational spectroscopy (attenuated total reflection, infrared
and Raman imaging), library searching, chemical fingerprinting, and biomarker
identification. Lavine is a member of the editorial board of several journals
including Analytical Letters, Journal of Chemometrics, and the Microchemical
Journal and served as the author of the fundamental review of chemometrics
which was published biennially by Analytical Chemistry. Lavine has served as
Chair of the Northern New York Section and Oklahoma Section of the ACS and
as Program Chair for SCiX in 1992 and the Northeast Regional Meeting of the
ACS in 1999.

Steven D. Brown

Steven D. Brown (PhD, University of Washington) began research as an
inorganic chemist, earning an MS for work in fluorine chemistry. When he
enrolled in the PhD program at the University of Washington, he took up the
new field of chemometrics and earned a PhD from Bruce Kowalski in 1978.
He has served as Assistant Professor at UC Berkeley, as Associate Professor at
Washington State University, and is now Willis F. Harrington Professor at the
University of Delaware, where he teaches analytical chemistry and multivariate
statistical methods in chemistry.

Dr. Brown’s publications include some 200 publications, chapters and
reports, as well as two books, including the four-volume treatise Comprehensive
Chemometrics (2009, Elsevier). His research comprises application of
multivariate data analysis to a wide range of problems relying on chemical
measurements, including approaches to data fusion, transfer of calibration
Bayesian analysis, and multivariate classification.

© 2015 American Chemical Society
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Karl S. Booksh

Karl S. Booksh is a professor of Chemistry and Biochemistry at the University
of Delaware. He earned his Doctorate in Analytical Chemistry working with
Prof. Bruce R. Kowalski in the Center for Process Analytical Chemistry at the
University of Washington. He was an NSF Postdoctoral Fellow at the University
of South Carolina before joining the faculty at Arizona State University in 1996.
He has received a NSF CAREERAward, Camille and Henry Dreyfus New Faculty
Fellowship and Elseiver Chemometics Award. He served as the North American
Editor for the Journal of Chemometrics. Booksh is a Fellow of the Society for
Applied Spectroscopy and a Fellow of the American Chemical Society.

Booksh’s research interests revolve around sensor design and calibration.
Booksh’s graduate work was on multi-way calibration. As a postdoc he began
designing sensors to become more compatible with multi-way calibration
methods. Recently Booksh has been working in multivariate image analysis and
developing multivariate calibration and classification strategies that are robust
to uncalibrated interferents. Booksh is also active in broadening participation in
chemistry, particularly for students with disabilities.
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Chapter 1

Chemometrics and Bruce: Some Fond
Memories

Svante Wold*

Institute of Chemistry, Umeå University, Sweden
*Phone: 603-465-2622, e-mail: sbwold@gmail.com

This chapter describes the transformation of a young physical
organic chemist (SW, 1964), from a believer in first principles
models to amiddle-aged chemometrician (SW, 1974) promoting
empirical and semiempirical “data driven, soft, analogy”
models for the design of experiments and the analysis of the
resulting data. This transformation was marked by a number
of influential events, each tipping the balance towards the data
driven, soft, analogy models until the point of no return in
1974. On June 10, 1974, Bruce and I together with our research
groups joined forces formed the Chemometrics Society (later
renamed to the International Chemometrics Society), and we
took off into multidimensional space. This review of my
personal scientific history, inspired and encouraged by Bruce,
is illustrated by examples of method development driven by
necessity to solve specific problems and leading to data driven
soft models, which, at least in my own eyes, were superior to
the classical first principles approaches to the same problems.
Bruce and I met at numerous conferences between 1975 and
1990, but after that, Bruce and I gradually slid out of the
academic world, and now Bruce has taken his final step.

Introduction

I first met Bruce in 1973 during my stay as Statistician in Residence
(Department of Statistics) at the University of Wisconsin at Madison (UW).
This one year appointment was a direct result of attending the 1972 Gordon

© 2015 American Chemical Society
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Research Confence in Statistics and meeting George Box and Bill Hunter, eminent
statisticians at UW. In the previous year, I had received my PhD in physical
organic chemistry at Umeå University in Sweden, and I then coined the term
chemometrics in a grant application for support of my research. Prior to assuming
my position as Statistician in Residence at Wisconsin, Kowalski and Bender had
published two seminal papers on pattern recognition in chemistry (1, 2). Their
work was a revelation to me, and I was anxious to meet Bruce Kowalski as well
as receive an education of sorts about statistics during my year with Box and
Hunter at UW.

The opportunity to meet Bruce was the result of a telephone conversation
betwen George Box and Rudi Marcus. A symposium involving chemistry faculty
who use statistics and computers in their research was organized by ONR in
Tucson, AZ in the fall of 1973. Box was asked by Marcus to be the expert in
statistics and computers and serve as a referee for the symposium. Box instead
volunteered my services as a chemist knowledgeable in computers, and I flewthe
night beforeto Tucson. Unfortunately, the airlines lost my luggage during the trip,
and I arrived on Monday morning at the lecture hall wearing dirty dungarees and
a black shirt. Faculty giving presentations were all dressed in suits and ties. As
I entered the lecture hall, a gentlemen approached me, introduced himself as Dr.
Marcus and asked if he could help me. After explaining that I was the referee
from Wisconsin and apologizing for my appearance, I was warmly greeted by Dr.
Marcus and brought over to meet the faculty participants. They formed a line
in the lecture hall, and I greeted each of them with a hand-shake. The second
individual in the line was Bruce Kowalski, and I was stunned to see a young man
of my own age, but I held a straight face and expressed my appreciation for his
interesting work. Later, when listening to Bruces’s presentation I concluded that
he was the only individual at this conference who understood how computers
should be used in chemistry. After the meeting, I shared this observation with
ONR in my report.

During the Tucson conference, I had the opportunity to speak with Bruce at
great length. I told Bruce that he and I were the only individuals attending the
conference who were active in the field of chemometrics. Bruce was not familiar
with the term chemometrics and initially exhibited some resistance to this term.
He nonetheless accepted it as a description also of his own research and quickly
became both a strong proponent and spokesman for this new field. Bruce in our
conversations at the ONR meeting also expressed interest in learning more about
SIMCA (3, 4) and invited me to visit him at the University of Washington (UW)
in June 1974 to demonstrate SIMCA’s capabilities relative to his own software
package ARTHUR (5), which emphasized the linear learning machine, PCA,
K-nearest neighbor classification, hierarichical clustering, and graphics. During
the head-to-head competition between SIMCA and ARTHUR which involved
the analysis of 20 standard data sets, we concluded that SIMCA was superior
to the linear learning machine and K-nearest neighbor and Bruce subsequently
incorporated a version of SIMCA into ARTHUR. While celebrating the success
of SIMCA at a Seattle bar and grille on the strip boarding UW with Bruce and
his research group, the International Chemometrics Society was formed after ten
shots of taquila. My June trip to UW was followed by attending the 1974 Gordon

2
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Research Conference on Statistics in Chemistry and Chemical Engineering in
July where Bruce presented a very impressive talk on chemometrics.

Bruce accepted my invitation to visit Umeå in 1978 (where Bruce at
his farewell party consumed more bodycakes, aka dumplings, than any other
participant). Then we both were invited to Herman Wold’s PLS Conference in
Cartigny, Switzerland in 1979. At Cartingny, both Bruce and I were scolded
by Herman Wold for arriving late to a presentation because we had spent the
afternoon in Geneva.

The first international meeting in chemometrics, well organized by Bruce, was
held in 1983 at Cozenza. At this meeting both PLS discriminant analysis and
PLS regression were discussed at great length. Although this meeting was rich in
intellectual content, the living conditions for this meeting were somewhat spartan
(e.g., no toilet seats or paper). The label “Cozenza survivors” is often affixed
to meeting participants and both Bruce and I considered our participation in this
meeting as a badge of honor. Other international meetings attended by both Bruce
and I includedMULDAST 84 (Umeå) and Gothenburg 90 where Bruce and I were
awarded Bergman medals by the Swedish Chemical Society.

Bruce’s retirement from UW was celebrated at FACSS 99 as was the 25th
anniversity of the formation of the International Chemometrics Society. At this
meeting, it was evident that both Bruce and I were sliding out of the academic
world. Our paths were diverging. Bruce’s was stepping down as Head of the
Center for Process Analytical Chemistry while my involvement in Umetrics, a
company that I had founded with Rolf Carlson in 1987, was burgeoning. Bruce
and I saw each other less and less often, and the last time was SSC 11 in Loen,
Norway 2009 (see Figure 1).

Figure 1. My last conference with Bruce at SSC11 in Loen, Norway

Strolling down memory lane, I will attempt in the remaining part of this
chapter to explain what I have gained from Bruce over the years by way of
projects performed alone or by my own research group that I view as historically
important. It is easy to become entangled and distracted by sentimental memories

3
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of Bruce, as well as those funny moments and unexpected revelations. However,
the remainder of is chapter are devoted to chemometrics, a field that Bruce and I
have both helped to nurture and develop from its infancy.

Principal Commponents Analysis (PCA)

Chemical data often occur in the form of tables with, say, K variables
(properrties, meaurements, ...) made on N samples (objects, cases, ...). A typical
example consists of N analytical samples of, say, seawater, with K GC-MS
variables measured on each sample. Another example is provided by N samples
of tumor cells with K GC variables measured in the cell walls of each tumor
sample.

Around 1965-70 the chemical labs were invaded by new measuring devices
such as infrared and NMR spectrometers, and mass spectrometers combined
with separation methods such as gas- and liquid chromatography. Many of these
instruments gave data with more variables than samples. Statistical folklore stated
that these data could not be analyzed as such, but first the number of variables
K must be decreased to be subsantially smaller than the number of samples, N.
Luckily, my father Herman was working with multivariate (K > 1) economics
data and found to his satisfaction that certain types of data analysis examplified
by PCA worked well also with data matrices with K > N. We of course tried PCA
on chemical data tables with K > N. And PCA worked well there too. It was just
that nobody had really tried -- the N > K dogma was too strong.

Hence, PCA has become a cornerstone of chemometrics. It is closely related
to factor analysis (FA) and often called principal factor analysis. PCA provides
a decomposition of a (N x K)matrix in terms of a set of pairs of score column
vectors (ta) times loading row vectors (pa’). This separates the information in the
data table into one part concerned with the samples times one part concerned with
the variables. See eqn.1 below.

It is easy to understand how PCA applies to a spectral data matrix where
each row is a sample spectrum, and each column is the absorbtion of radiation
at a certain frequency. According to Lambert-Beer’s law, each row spectrum is
the sum of the sample constituent spectra times the corresponding concentrations.
This was shown early by Bruce, and it led to a way to determine the constituent
concentrations in new sample on the basis of a training set of samples with known
constituents.

PCAwas further clarified by seing the data matrix represented as N points in a
K dimensional space, and the components (scores times loadings) as a hyperplane
in this space with as many dimentions as the number of significant constituents in
the actual data.

Linear Free Energy Relationships

Being an organic chemist I observed that a number of PC-like models –
LFERs -- with one or two components were used by physical organic chemists
to understand the reactivity of sets of similar molecules in different reactions.

4
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Examples are the Brönsted and the Hammett “equations”. At a visit to Otto Exner
in Prague in spring 1971, he helped me understand how PCA was a rather natural
way to model such reactivity data, and after returning to Sweden I managed to
derive these models as Taylor-expansions of unknown relationships with a certain
plausible structure.

Hence, chemometrics can trace its origins also to the field of physical organic
chemistry where linear free energy relationships (LFERs) have been used since
the late nineteenth and early twentieth centuries to describe the variation in
reactivity among similar compounds. Early examples include the relationship
between the narcotic effect of a series of drugs and their partition coefficient (6)
and the chemical reactivity of substituted benzene derivatives as a function of
their substitutents, the so-called Hammett equation (7). When the model errors
are too large, one can often decrease their size either by limiting the domain of the
model or by including more terms in the equation. During my dissertation studies
in physical organic chemistry, I came to the conclusion that an interpretation of
LFERs in terms of expressing combinations of fundamental effects was simply
too restrictive. A better approach would be to treatthe LFERs as empirical models
of similarity. Using PCA (8), it was easy to demonstrate that LFERs could be
derived from a table of measured data. When comparing a dual substituent
parameter model in a modified Hammett equation (see eqn. 2) with the equation
used for a PC model (see eqn.1), LFERs are seen to be mathematically and
statistically equivalent to few-components PC models.

One advantage of using PCA to develop LFERs is that this provides
information about the number of product terms necessary to give the model its
optimal predictive properties. The substituent scales obtained directly from PCA
of the datainclude sensitivity parameters (i.e., the loadings), the influence of the
substituent on the phenomena investigated (i.e., the scores) and the reference
point corresponding to the substituent having no influence on the properties or
reactivity of the compounds (i.e., the mean of the measured data). Residuals in
both the modified Hammett equation and the PC model describe the nonmodeled
part of the data which can be attributed to measurement errors and the inherent
limitations of the model being simplifications of reality.

A direct consequence of this realization is that LFERs can be treated as
locally valid linearizations of complicated functional relationships. By equating
the measured data with a continuous function in two vector variables followed
by a differentiation of the function and a grouping of the terms in the resulting
Taylor expansion, it is shown that PC models can approximate data measured
on an ensemble of similar objects whether these objects are complex biological
samples, chemical reactions or equilibria (9, 10). Although mathematically
this argument is straightforward, its consequences are profound. PC models
can be used to describe any data of a class of similar objects whether the data
are kinetic, thermodynamic, spectroscopic, or express product distributions or

5

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

1

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 



constituent concentrations in the objects. Furthermore, any variable measured
on an ensemble of sufficiently similar objects is correlated to any other variable
measured on the same objects. The closer the similarity between objects, the
stronger the correlations are. From the standpoint of a philosophy to investigate
chemistry, empirical models that are locally valid can be constructed for similar
objects or processes but the variables that are measured often have no fundamental
meaning other than serving as indicators of similarity. This forms the basis of
the SIMCA method for classification (3, 4). Here each class is modelled by a
separate PC model which is derived from the training set, and new observations
(cases, samples, ...) are classified according to their similarity – proximity in the
multivariate data space – to the class models.This provides a quantification of the
concepts of similarity and analogy, cornerstones in the understanding of complex
systems.

To demonstrate both the efficacy and value of this approach, Albano and
Wold (11) employed PC models to investigate the variation in the rate of
solvolysis reactions involving both exo-and endo-2-norbornyl compounds using
published but nonanalyzed kinetic data. Winstein in 1949 had proposed the
existence of so-called nonclassical carbonium ions to explain the abnormally fast
solvolysis of exo- 2-norbornyl compounds in comparison to the corresponding
endo compounds. H. C. Brown proposed an alternative explanation invoking
steric strain release and rapid equilibria between classical ions.

The data set obtained from the literature consisted of 26 compounds and
14 rate constants for 7 solvents of different polarities ranging from methanol to
trifluoro-acetic acid at two different temperatures. A reaction where the charge
is localized in the transition state would be more affected by a change in solvent
polarity than a reaction where the charge is delocalized in the transition state.
Therefore, these data could provide a solution to the controversy arising from
the different interpretations for the abnormally fast solvolysis of exo-2-norbornyl
compounds. Of the 26 compounds in the data set, two were exo- norbornyl and
two were endo-norbornyl compounds. It was the consensus of workers in the
field that two of the 26 compounds reacted via a classical ion transition state with
delocalized charge, one compound reacted through a nonclassical ion transition
state where delocalization occurred, and 16 compounds reacted via a classical
ion transition state with localized charge. The remaining three compounds were
labeled as interesting compounds as workers in the field could not come to an
agreement regarding charge delocalization in their transition state.

A cross validation analysis (12, 13) shows that a two components PC model
adequately describes this matrix. This corresponds to using a model consisting
of two phenomenological factors to describe the 26 solvolysis reactions. Figure
2 shows a score plot of the two largest PCs of the data. An examination of this
plot revealed four potential compounds clusters. Two clusters (labeled as primary
and secondary which refers to the substituents varied in the parent structure) are
comprised of compounds that react through a classical ion transition state with
localized charge. Both endo norbornyl compounds fall in the cluster containing
compounds that form classical ion transition states. The other two clusters
contain compoundsexhibiting charge delocalization in their transition state. Since
the exo- 2-norbornyl compounds fall in a cluster associated with known charge
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delocalization in the transition state, Winstein’s interpretation would appear to be
correct as these results would be difficult to interpret using Brown’s formalism.

Figure 2. Plot of the scores of the two largest PC.s of the 26 compounds
and the 14 specific rate constants comprising the data set. C = Classical, E
= Endo-Norbonyl, N = Non-Classical, R = Resonance, U = Unknown, X =

Exo-Norbonyl.

The clear similarity between the endo-norbornyl substrates and the ordinary
cyclic secondary substrates such as cyclohexyl and cyclopentyl and between exo-
norbornyl and methylcyclopropyl constitutes additional evidence for the presence
of nonclassical charge delocalization in exo-norbornyl solvolyses. The approach
used here, structuring the problem as one of empirical similarities which can be
tackled by multivariate methods, is more straightforward than theories that rely
upon the detailed behavior of solvolytic transition states.A fundamental model
relating the degree of charge delocalization to measured rate constants would be
problematic to construct. The importance of using model systems with known
behavior, in this case transition states with and without charge delocalization,
the need for data related to the problem of interest and the application of the
appropriate multivariate analysis method cannot be emphasized enough.

PCA Extensions; PLS, PLS-DA, OPLS and OPLS-DA
PCA is an excellent modelling tool for data where all variables are of the

same type. However, a very common data-analytical problem in chemistry and
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elsewhere is given by that of multiple regression. Here to main problem is to
model and predict one or several response variables, y or Y, from a set of predictor
variables collected in the matrix X. We note that in the typical “chemometrics”
situation, the X-variables are numerous and collinear, and hence cannot be called
“independent”.

Between 1975 and 1980 my father Herman spent much of his time thinking
about this problem. He developed something he called multivariate path models
estimated by partial least squares (PLS). Together we showed that the simplest
of these PLS models with only two blocks could handle the multiple regression
problem also for data where the predictor matrix X had many variables and
relatively few samples. This turned out to solve also the discriminant analysis
(classification) problem using the response matrix Y with binary (1/0) variables
expressing the class structure. We naturally called this PLS-DA for PLS
discriminant analysis.

PLS models can also be seen as extensions of PCA where a PC model is
derived to (a) approximate the predictor matrix X, and (b) form a linear relation
between the X-scores and the response variable(s) y or Y. Thus, two-block
PLS addresses the same problem as multiple linear regression (MLR) with the
difference that PLS also forms a bilinear model of X. The latter makes PLS
capable of modeling the relationship between X and y (or Y) also when the
number of X-variables, K, greatly exceeds the number of cases (samples, ...), N.

Like PCA, PLS can be derived as a truncated Taylor expansion for a set of
similar samples. Hence PLS applies to any data measured on a set of similar
objects (cases, samples, ...). This has made the PLS approach widely used with
data from modern instrumental techniques providing many variables such as GC
and LC/MS, NIR, NMR, as well as genomic and other bioanalytical data.

To facilitate the interpretation of PLS models (including PLS-DA), different
rotations of the models have been tried. We founda way to capture all information
in X about y (or Y) in a single score vector, tOPLS for the case with a single y. This
was given the name OPLS for Orthogonal PLS (14). Below we see an example
of OPLS-DA (OPLS discriminant analysis) applied to a biological data set with
many variables.

Multivariate Calibration

In an intensive and exciting collaboration between Herman, Harald Martens,
and myself, we formulated around 1980 what we called multivariate calibration.
Here we wish to predict the concentration of one or several analytes in “new”
samples from the spectra and known composition of a training set of N samples.
And the spectra may have many more variables K than the number of training
samples, N.

PLS worked like a charm for this type of data, creating great excitement in
analytical chemistry, Harald Martens and Tormod Naes wrote an excellent book
about the subject, and the rest is history.

8
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Detection of Ovarian Cancer Using Chemometric Analysis of
Proteomic Profiles

The early diagnosis of ovarian cancer could significantly reduce mortality
rates among women. The disease usually presents few symptoms until it spreads
beyond the ovaries. The five year survival rate for late stage presentation is 35%,
whereas a diagnosis in the early stage is associated with a five-year survival rate of
over 90% (15). In a landmark paper, Petricoin and coworkers (16) discriminated
between known ovarian cancer patients and normal controls using a data analytical
tool based on a combination of genetic algorithms and cluster analysis applied
to low resolution SELDI-TOF mass spectra of blood serum samples. Petricoin’s
study has raised the possibility of developing a rapid and inexpensive technique
for the accurate and timely diagnosis of ovarian cancer.

Petrocoin’s data has been analyzed previously by other workers (15, 17–19)
using univariate methods for variable selection with the selected variables entered
into a stepwise linear discriminant analysis routine for discriminant development.
Here, we reanalyzed Petrocoin’s data (20) using a more straight forward approach
–OPLS-DA (14). Unlike themethods used by Petrocoin and other workers, OPLS-
DA is a single step approach that analyzes all 15,154 m/z values (which ranged
from 0 to 20,000) simultaneously without the need for prior variable selection and
without the rigid constraints of having more samples than variables.

Like PLS, OPLS-DA is a scale dependent method. When applying these
methods to optical spectra, the variables (e.g., absorbance values at each
wavelength) are routinely centered but not scaled prior to the analysis to ensure
that wavelength regions with the largest signal amplitude variation exhibit the
most influence on the data analysis. The alternative is to apply autoscaling where
each variable is centered and then scaled by its standard deviation. The drawback
of autoscaling is that noisy wavelength regions in the spectra can become inflated
which may mask the effects of interests.

However, with NMR andMS data, Pareto scaling has become popular. Pareto
scaling is a compromise between mean centering and autoscaling and involves
dividing each spectral variable by the square root of its standard deviation after first
centering the data. Pareto scaling was applied to the SELDI-TOF mass spectral
data prior to OPLS-DA.

To optimizeOPLS-DA, samples comprisng the training set were selected from
the control and ovarian cancer groups according to a statistical design. First, PCA
was used to calculate a number of scores (known as principal properties) and then
the principles of design of experiments were applied to these scores. The use of
design of experiments ensured the selection of a diverse and representative training
set that embraces the validation set. The full data set of 91 controls and 100 cancer
patients was divided into a training set of 97 samples and a validation set of 94
samples.

PCA performed for the controls and the cancer group together did not reveal
any strong outliers. Three PCs provided a good summary of the data explaining
77% and 75% of the total cumulative variance of the data respectively. A 43 full
factorial experimental design defining 64 combinations of the first three PC.swere
used to select the training set. Each PC score vector was divided into 4 levels and

9
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with three PC.s this created 64 combinations. Selection of samples for the training
set was limited to individuals corresponding to design points. This resulted in
a training set of 43 controls and 54 ovarian cancer patients. The remaining 48
controls and 46 cancer patients formed the validation set.

OPLS-DA was applied to the training set. The number of PLS-
DAcomponents necessary to describe the training set was estimated using cross
validation with 1/7 of the data being excluded during each round. This yielded
six PLS components. However, the OPLS-DA concentrated all discriminating
information into the first component. In this case, only 10% of the original mass
spectral variation is responsible for the class separation. As shown in Figure 3
(training set) and Figure 4 (validation set), the classes are completely separated by
the first component. A second component is shown in each plot for visualization
purposes only as it offers no additional discriminatory power. There is no risk
of of overfitting because there is only one predictive component and the data set
was split into a training set and validation set. For both sets, 100% selectivity and
specificity were obtained.

The results of the chemometric analysis reported here are transparent and
interpretable using a few intuitive plots. The degree of class separation is readily
apparent from the score plots. In contrast to the multi-step approaches reported
previously, OPLS is a single step technique that requires no variable selection as
the entire spectrum is utilized. Variable selection should be undertaken with great
care as there is a serious risk of throwing away crucial diagnostic information.
The inherent danger of univariate t-tests and related nonparametric techniques for
variable selection is that such tests do not take into account how variables can
combine to form informative and diagnostic patterns. As pointed out by Alexe
(19), the combined discriminatory power of a group of biomarkers cannot be
inferred from their individual p-values.

Figure 3. OPLS plot of the 43 controls and the 54 ovarian cancer samples
comprising the training set

10
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Figure 4. Projection of the the blind validation samples onto the OPLS map
of the training set data

Conclusions

Data analytical approaches are practical and understandable when applied to
good and relevant data. When utilized in tandem with design of experiments and
predictive diagnostics (as well as insight) the results of the analysis are reliable.
Truly, Bruce has been a beacon leading us to these conclusions.

However, more work needs to be done also in this area. Semi-automatic
procedures need to be developed for data transformations, scaling and centering,
and outlier detection. This may require the use of robust estimators. Variable
selection is often crucial for a successful data analysis but it must be carried out
with great care and insight. Better ways to look at multivariate data in data space
to conceptualize and capture the data structure are also needed. Chemometrics in
the early days was synonymous with pattern recognition, classification, and linear
and nonlinear mapping, and this situation remains today.

Using the principles of experimental design, investigations can be designed
to explore this multivariate space more efficiently and informationally than what
is presently done with the traditional one factor at a time approach. Experimental
design can be viewed as an indirect approach to the study of the joint effects
of many factors. Multivariate analysis such as PCA and PLS is the indirect
observation of intrinsic latent factors. Teaching and further developing these
principles is an important task. Nevertheless, after many analyses of data sets
in a variety of projects with the expectation that an important secret will be
revealed by the analysis, I have come to the realization that data sets often contain
very little information. This absence of information is best summarized by the
observation by George Box, “The low quality of a data set is not revealed until it
is properly analyzed.”

11
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For chemometrics to prosper, contact between chemists (not only analytical
chemists) and chemometricians must be strengthened. It is crucial that relevant
and interesting problems be tackled in chemometrics as the success of any
field is ultimately defined by the societal and scientific problems that it has
tackled and solved. Fortunately, many problems in chemistry and biochemistry
(proteomics and metabolomics) can be structured in a form that can be expressed
as a mathematical relation; the related mathematical problems are often quite
straightforward. Collaborations and research teams will play an important role
in the future of chemometrics due to the increasing interdiciplinary nature of
problems tackled by chemists. For this reason, publishing chemometrics in
chemical or biochemical journals and not being limited to chemometric journals
should be the goal of every researcher in this field. But, remember what Einstein
said, “Make things as simple as possible but not simpler.”
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Chapter 2

Kowalski’s Vision on Strength through
Diversity: One Researcher’s Story

William S. Rayens*

Department of Statistics, University of Kentucky, 725 Rose Street,
Lexington, Kentucky 40536-0082

*E-mail: rayens@uky.edu

Bruce R. Kowalski, founder of CPAC and co-founder of the
field of chemometrics, died on December 1, 2012. Although he
is often remembered as bringing together the academic talents
of chemists and engineers, he also showed enormous vision
in his effort to assimilate statisticians and mathematicians
into the field. This chapter recalls the journey of one such
mathematician-turned-statistician-turned-chemometrician, and
is offered in honor of Dr. Kowalski’s vision. The piece is
written largely in a non-mathematical style and, as such,
should be accessible to anyone, regardless of mathematical
background.

Introduction

When Dr. Barry Lavine asked me to write this chapter as a summary of
my work in chemometrics, my first thought was simply that no one would be
interested. While I have worked in chemometrics for over 25 years and have seen
the field grow in mathematical and technical complexity during that time, I am just
one of many who contributed from the perspective of a non-laboratory scientist.
There is nothing particularly special about my story. However, when I reviewed an
early proposal for this book I was struck by how that non-scientist role, typically
taken up by statisticians and mathematicians, was at risk of being ignored. So I
agreed to write a summary of my contributions, as a representation of the many
contributions that non-bench scientists have made to the field.

Finding a theme or some unifying principle around which to write was
difficult. Initially, I was tempted to write about the meaning of truth through

© 2015 American Chemical Society
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research differed noticeably among authors in the early days of chemometrics.
Those with more mathematical training tended toward mathematical proofs
and axiomatic reasoning, while those with bench expertise often leaned toward
the empirical truth offered by a well-designed, replicable experiment. But that
distinction is not only awkwardly abstract, it does not serve well to distinguish
chemometric research over time. As the field has evolved we have seen
classically-trained chemists, engineers, physicists, psychologists, and computer
scientists publish rigorous (enough) statistical arguments in the chemometrics
literature, just as we have seen statisticians and mathematicians in the field
develop an (at least passable) appreciation for how algorithms and empirical
work may already speak directly to the problem they are working on. We have
all been influenced for the better by this diversity. What I would argue, and want
to remain as an important subtext throughout, is that what we now have as an
academic field, was not at all what we started with, and, indeed, the field might
not have survived at all if not for this early vision of Kowalski.

In the end, I had to admit that I did not have the philosophical qualifications
to pull off a chapter on the nature of truth, so I decided to stay within my comfort
area, and offer a summary of my own research - as I had been asked to do in the
first place. I have adopted an informal, first-person style with which I am most
comfortable. I have also been careful to limit my discussion to just three broad
research areas where I have had the opportunity to contribute in the chemometrics
literature. We will stick to just those three: mixture surfaces, compositional data
analysis, and discriminant analysis.

Mixture Surfaces

My exposure to chemometrics began in the spring of 1986 as I was preparing
to defend my dissertation in the mathematics department at Duke University. I
was studying under Dr. Donald Burdick, a first-rate scholar and a student of
the late, great statistician Dr. John Tukey from Princeton. Dr. Burdick is a
rare combination of mathematician, exploratory statistician, and cross-disciplinary
researcher, and was the only statistician in the department at that time. Dr. Burdick
had a history of partnering with chemists, and his latest venture included me in
an ongoing grant he had with the Research Triangle Institute. This grant, which
brought me back to graduate school out of a low-brow, high-volume industry job
as a quality control engineer, was directed by Dr. Edo D. Pellizzari, a biochemist
out of Purdue and long-time researcher at RTI. Our assignment – which paid my
graduate student stipend and produced my dissertation topic – was to construct a
statistically defensible way of identifying the presence and relative proportions of
the nine PCB Aroclors (© Monsanto Corporation) - first in laboratory samples,
then in real adipose tissue.

16

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

2

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 



Dr. Burdick already had some ideas about how we would approach this
problem. He shared those with me and turned me loose to see what i could
come up with. For data we had six chromatograms on each of the nine (pure)
PCB Aroclor samples, measured on 93 isomer/congener pairs. And we had 38
laboratory mixtures of these Aroclor classes, with mixing proportions unknown to
us, but known by Pellizzari and his staff. We viewed each of those chromatograms
as a multivariate observation in 93-dimensional space. That kind of multivariate
thinking has long become second nature in chemometrics, but it was not at all
common at the outset.

Burdick and I approached this as a problem in higher-dimensional
convex geometry. We used the mean of each Aroclor group as a vertex of an
eight-dimensional simplex (think higher dimensional triangle or pyramid) in
93-dimensional space. The unknowns also were represented as multivariate
observations in 93-dimensional space that, owing to laboratory construction
and variability, would not necessarily lie on the surface of, or interior to the
simplex. Ideally we wanted to best separate the means in a meaningful way before
attempting to classify the unknowns. Fisher’s linear (canonical) discriminant
analysis (LDA) was the most appropriate tool we had at our disposal at the
time, but the basic Fisher optimization problem – and there is still confusion on
this point in the chemometrics literature today - can only be solved in practice
if the number of variables (93 in this case) is less than the number of total
observations (54 here) minus the number of groups (9 for us). Otherwise the
pooled within-groups sums-of-squares and cross-products matrix is not invertible.
So some initial dimension reduction was necessary and we naively chose to use
principal components analysis for this step. We typically used 25 component
scores and replaced the original 54 x 93 data set with a 54 x 25 matrix of scores.
It would be a decade before the superiority of PLS to PCA for this dimension
reduction would be understood (1). After this first step the original simplex in R93

was replaced by a proxy simplex in R25 (Figure 1).
While the idea of what to do next was clear, the devil was in the mathematical

details. Once we had the 54 observations on 25 principal component scores, we
applied Fisher’s LDA to best separate the 9 class means in 8-dimensional space.
Thus, after the LDA step, we had 54 observations in 8-dimensional space and
our original simplex in R93 was now transformed into a nine-faceted simplex in
R8. Recall, this came about as the result of two transformations, the initial PCA
transformation and then the LDA transformation. It is worth noting that this brand
of “discriminant analysis” cannot be easily mapped to any claims of minimized
“misclassification probabilities”, aside from the two-group case. This confusion
is still apparent in many of the papers I referee for the chemometrics literature.
To be fair, the language does not really affect how well the procedure performs in
practice, but it does confuse the sense in which we think we have done something
“optimal.” This was, and may be still, a much more natural way for a statistician
or mathematician to think, than a chemist.
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Figure 1. Classical Mixture Surface

The practical estimation problem was then solved as follows. An unknown
observation was first encountered in 93-dimensional space, just as the original
data were. Then it was twice transformed by the two transformations mentioned
above, appearing then in R8, either interior to, exterior to, or on a facet of the
above-mentioned simplex. This is where some of the fun mathematics (convex
geometry) came into play in those early days. An observation would be on the
simplex if and only if it could be written as a non-negative convex combination
of the vertices (group means); that is as a weighted average of the mean vectors,
with all non-negative weights that sum to 1. These “barycentric coordinates” were
perfect candidates for formal estimates of the underlying mixing proportions. If
the observation fell on a facet of the simplex, then there were several possibilities.
It could be on a 7-dimensional face proper, or on any of the lower-dimensional
facets of that 7-dimensional face. Again, the barycentric coordinates computed
for that observation would serve to locate it. It was expected that most of the test
observations would fall outside the simplex, however. So it became immediately
necessary to be able to identify (and proclaim as unique) the point on the simplex
that was closest to that observation, use that as a proxy for the observation, and
use the barycentric coordinates of that closest point as estimates of the mixing
proportions for the original observation. For young researchers in the area, take
note that this part of the problem was challenging. Adopting the right metric for
“closest” and solving this closest point problem practically involved some non-
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trivial programming (remember this is pre-1986) and a clear understanding of the
geometry of a k-dimensional simplex. In that sense, it was an ideal problem for
a mathematical scientist to work on. In any case, this is how we produced our
estimates of the pseudo-unknown mixing proportions.

When Pellizzari and his team revealed the true proportions, we learned that
our model had performed exceptionally well. Acting on Burdick’s advice, I wrote
up themodeling procedure and the results, and submitted a paper to Technometrics,
which at the time was about the only mainstream statistics journal that would
review this kind of hybrid theory-application work. A lot has changed since then.
A letter came back from Technometrics on July 23, 1986. Too soon to be good
news! Indeed, the Editor-elect wrote:

You seem to be unaware of the important literature that is available for
solving problems of this type. See the list of references given in the
Associate Editor’s report. Perhaps your methods offer some advantages
over the standard methods, but his need to be demonstrated.

This was followed with the requisite apologies for not being able to accept
the paper. I was particularly stymied because here I was finishing a degree
in a mathematics department, with only two or three statistics courses in my
repertoire, trying to write a dissertation under a well-known statistician, with
a primary application in analytical chemistry, and having little feeling for the
statistical references the Associate Editor had suggested were missing. However,
when Dr. Burdick looked at the references, chief among these being the work
by D.M. Titterington on mixtures of distributions, he concluded immediately
that the Associate Editor had confused the physical mixtures problem we were
working on with problems of a similar name, that the statistical community had
been working on for over a decade. That seminal work by Titterington bore little
resemblance to our physical mixtures problem. This is when my association with
chemometrics began, quite by accident.

Dr. Burdick had, at some point, though I do not know that I ever knew why,
contacted Dr. Kowalski and told him about what we were doing. Not long after
that I received a letter from Dr. Kowalski that explained a little about the new field
of chemometrics, and a little more about the journal he had just launched. He then
proceeded to invite me to submit our work there, noting that in his view the field
would only grow the way he hoped it would grow if he could get mathematicians
and statisticians involved. It was a short letter, but one that clearly spelled out his
vision. Dr. Steven Brown acknowledged receipt of our paper on August 18, 1986.
The reviews, which were completed by mid-fall, were generally positive and the
paper was accepted and ultimately published in the first volume of the Journal of
Chemometrics (2). It is interesting to look back at one of the referee’s reports. In
her report she starts a process of terminology mapping that I think continues in
the journal today, and is almost an inevitable part of an environment that brings
together people with such different backgrounds. She wrote:

In this article, Burdick and Rayens use principle (sic) components
analysis (dimensionality reduction) and discriminant analysis (noise
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filtering and mean separation) to find the g-1 dimensional space and
consequent simplex of a constrained mixture problem.

She went on to rightly take us to task for not understanding the complexity of real
PCB data and the limitations of taking data “on the vertices only.” She ends up
concluding, however that:

… (I) find the thinking involved to be an elegant and well written
description of the chemist’s intuitive feel for mixture surfaces.

There is little doubt in my mind that when Dr. Kowalski extended an
invitation to statisticians and mathematicians, he set in motion a powerful
intellectual synergy. While this interaction may have occasionally frustrated
chemists and statisticians alike, it forced a collaboration of perspectives. Some of
us were forced to appreciate the laboratory environment, even if we did not know
which end of a chromatogram the sample went in. Others began to accept the
usefulness of mathematical models and the generality provide by “proofs”, even
if they might still have quietly preferred to think of a well-designed experiment
as providing all the generality needed.

We were never asked to apply our model to real adipose data, by the way, and
I am not sure why, though I do recall the RTI chemists talking at the time about
worries of liability. The real adipose data were associated with a larger problem
of lawsuits in the workplace. At issue was whether the PCB contamination found
in workers was a result of workplace exposure, or simply a result of exposure
through common sources such as the food chain. Knowing which Aroclors were
present and in what proportion were critical pieces of that assessment, but as
far as I know our model was never put to that final test. I should also point out
that before the paper was submitted to J. Chemom., Dr. Burdick and I were
careful to say in what sense the final barycentric estimates had a formal, statistical
interpretation as maximum likelihood estimators under a typical multivariate
normal model in the original p-dimensional space. After all, this had to ultimately
be part of a dissertation that was approved by a committee of mathematics
faculty! A few years down the road I eventually published the mathematical
details associated with the convex geometry and the closest-point projection in
The Journal of Mathematical Chemistry (3).

This initial work led to many other opportunities to publish in the
chemometrics literature as well as the more traditional statistical literature. Young
researchers interested in chemometrics should note that in those early days most
statistics departments would not consider chemometrics work as worthy. I have
heard many chemists say that they had the same problems within their chemistry
departments. While these misconceptions are not completely gone now, they are
far less an issue than 25 years ago. The sustained high mathematical level of most
(not all) chemometrics research has silenced many of the critics on the statistical
side. This is just another positive consequence of a dynamic that Dr. Kowalski
set in motion, one I would argue is quite profound and for which Kowalski should
receive credit. While the specific arguments defending the quality of specific
work had to be made by those of us scattered about the chemometrics world, those
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arguments would not have been successful if not for the generally high statistical
quality of papers appearing in the field. For completeness, I end this section with
a brief listing of some of my work related to this initial mixture surface model:

• Error Checking: As part of that original dissertation, but published
separately, we developed a rather formal, but nonetheless useful method
of flagging barycentric estimates that were unreliable (4). We did this
by capturing information in the residual vectors associated with each of
the transformations mentioned above: the identification of the original
chromatogram in R93 with a proxy in R25, then with a best-separated
proxy in R8, and the subsequent identification of this proxy in R8 with
the closest point on the simplex (mixture surface). We developed a
“total” residual measure that proved to be surprisingly good (given
how non-unique it was) at flagging unreliable observations, and even
flagging particular variables in those unusual chromatograms that might
be creating a problem. The chemists we were working with at the time
traced some of the anomalies we identified back to original laboratory
records, and even found evidence of columns that were not correctly
cleaned before runs were initiated.

• Refined Discriminant Analysis Step: About the time this work was
appearing in chemometrics, Dr. Tom Greene and I were working
on some purely statistical problems related to the estimation of the
between-groups sums-of-squares and cross-products matrix critical to
the LDA discriminant transformation step. At issue was the linear
pooling assumption nested in the Fisher’s LDA transformation and, in
particular, how reasonable or unreasonable this might be if the group
sizes were close to or even smaller than the number of variables (as
was the case in the mixture surface model we introduced above). We
submitted the first of what eventually became two papers on this work
just before I received a paper to referee, authored by Dr. Jerome
Friedman, on “Regularized Discriminant Analysis” (5). I contacted the
editors, and we ultimately agreed that there was no conflict of interest
with the coincidental overlap of submissions and refereeing tasks.
Indeed, Friedman’s paper was in many ways more elegant than ours
because he had wisely employed cross-validation (an idea that went on
to become common in the chemometrics community) to produce his
pooled estimates, while Greene and Rayens employed a theory-heavy
generalized Bayesian context (6, 7). As we all know, RDA became a
well-known and important fixture in several chemometics papers in the
1990s. The theory-heavy generalized Bayesian approach did not!
Several papers submitted to the chemometrics literature in the last decade
purport to have this or that new method which does discriminant analysis
in a better way. In several of the ones that I have refereed it was clear
that the presence of inadvertent pooling (“regularization”) was creating
the improvement, so, in that sense, there was not really a new discovery.
This kind of larger perspective on the statistics literature is a contribution
that statisticians have been able to bring to the field. In any case, I was
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able to close an intellectual loop here by revisiting the classical mixture
surface mentioned above and incorporating some of this new information
on covariance pooling. There are many things about that work that will
appeal to an applied statistician or mathematician, more than a chemist
probably, including the need to develop and employ efficient updating
strategies for a matrix inversion that had to be done a very large number
of times owing to the cross-validation estimation strategy (8). In the end,
substantial evidence was produced that the type of ridging suggested by
these regularization methods would improve the simplex model that we
used to introduce this section.

Compositional Data

In my opinion, the proper analysis of compositional data is still one of the
most overlooked areas in chemometrics. Compositional data are non-negative
multivariate data on p-variables, whose values sum to 1 across those variables. I
encountered them quite organically when thinking about the stochastic properties
of barycentric coordinates (see above), as well as in the chromatograms we used
for that original work on mixture surfaces. Indeed, it is still simply ordinary
in chromatography to adjust for the amount of the sample used to generate a
chromatogram by scaling it by the sum of all the peak heights for that observation.
This is simple, rational and very intuitive. Mathematically what you end up with
is an N by p data matrix (N observations on p features) that sums to the Nx1 1
vector across columns. What is interesting about these kinds of data is where
that scaling now forces them to reside. An observation that was originally free
to appear anywhere in Rp (or at least in the positive orthant of Rp) has now been
confined to the positive-orthant facet of a simplex in Rp – a simplex that has the
elementary vectors as vertices. See Figure 2. Such data are encountered with
sobering frequency anytime it seems natural and just intuitive to focus on vectors
of relative proportions and not the original data.

Figure 2. Domain for Compositional Data
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Unfortunately, multivariate data that reside in such a confined space cannot
be analyzed using the same multivariate techniques that one uses on unconstrained
data. That means no PCA, LDA, PLS, etc.! The statistician John Atchison spent a
lot of time trying to educate the statistical community about this. In spite of being
brilliant and a wonderful communicator with a huge body of work, he only had
limited success changing common practice. This is likely owing to the relative few
statisticians who did (and do) non-distributional exploratory multivariate analysis.
And even among those, the bar may have been high because the problem created
by these constraints is so fundamental that even themost basic statistical constructs
– e.g. “correlation” and “covariance” – have to be rethought and redefined. And
since nearly all of our common (exploratory) multivariate techniques (e.g. PCA,
LDA, PLS) depend on some version of correlation and covariance arrays, the
challenge is great.

I will not remake the case for why this is so important, but leave that to
papers referenced below or to the excellent, seminal work by Aitchison (9). Some
intuition might be useful though. Look again at the simplex below, and remember
that the data are confined to the facet in the positive orthant. Somewhat naturally it
stands to reason that data scatters are not likely to be elliptical or even symmetric in
that space, but reshaped (perhaps as banana shapes) because of the geometry of the
boundaries. It is like trying to stand up in a small triangular-shaped room. You are
likely to have to bend your back to fit. This constraint on how variables can jointly
change together requires a completely different way of thinking about correlation
and covariance. One simple, but profound, illustration of this is in the so-called
negative bias that the usual covariance matrix has to have when computed for
compositional data. That is, any covariance matrix computed on closed data has
to have at least one negative value in every row. You can see the “bending” that this
causes, as the data have to accommodate the geometry. Aitchison proposed many
elegant ways out of this dilemma, but his basic plan was based on the application
of logarithmic transformations, not on the original data, but on well-chosen ratios
formed from the original data. He went on to redevelop in this context a host of
the standard multivariate techniques, including log-contrast principal components
analysis and log-contrast discriminant analysis.

I became interested in the problem for a variety of reasons. First, the PCA
transformation that Burdick and Rayens and used for their original simplex model
was clearly no longer ideal, since it was performed on the closed chromatograms
that formed our data. But I could not simply apply Aitchison’s theory directly
since many of those chromatograms had real zeros among the 93 features.
The log-contrast theory that Aitchison developed was not able to handle zeros
effectively and this became more than a little problem from a practical point of
view. While practitioners would do lots of ad hoc things, including replacing 0’s
with very small values just so transformations were defined, there was no coherent
theory to support such practice. Eventually, Rayens and Srinivasan addressed
this in a general way in the chemometrics literature by constructing a theory
that used the Box-Cox family of transformations to do what the log-contrast
was being asked to do by Aitchison (10). This family was attractive because it
was relatively rich and could be indexed by a single parameter. Further, as that
parameter became small, this family would converge to the usual logarithmic
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transformation, so the log-contrast theory of Aitchison existed as a limit point
of this larger perspective. We developed a pseudo-likelihood approach and, in
essence, chose the indexing parameter to maximize that pseudo-likelihood by
way of cross-validation. In a follow-up paper Rayens and Srinivasan developed
a much more statistically-detailed set of non-parametric results that employed,
among other things, minimum distance estimators and multivariate bootstrap
techniques (11). These were used to develop point and interval estimates of
some conceptualized true set of constrained mixing proportions, around which
observations (e.g. scaled chromatograms) were generated in the presence of a
specific kind of modeled error. A handful of chemometricians were dealing with
the same kind of statistical models and statistical thinking in the literature by this
time.

Later, I worked with a student of mine to develop a log-contrast partial
least squares (PLS) model, with the refinements that Rayens and Srinivasan
suggested in the papers mentioned above (12). Other authors have published on
compositional data in the chemometrics literature as well, certainly. Still, my
distinct impression (based on papers I referee in the field every year) is that the
message never really got through to the larger audience. It is not completely clear
why the chemometics community has not been more open to the magnitude of
possible mistakes that can be made when analyzing compositional data using
the standard (multivariate) methods. I think part of the reason, as eluded to
above, is that it forces a kind of return to first principles, a rethinking of what
correlation and covariance even mean. Another part of the reason may be that the
community was never given enough actual evidence that simply applying usual
multivariate methods to closed data causes any seriously wrong-headed results
from a practical point of view. That is, there has not been enough attention focused
on producing empirical evidence that this is a substantive practical problem and
in the absence of that empirical evidence the effort involved in recreating one’s
entire multivariate toolbox is simply not going to be entertained.

There have also been some misunderstandings owing to the diversity of
perspectives, even as we celebrate that diversity. I remember a stinging series
of email exchanges with a very well-known and brilliant chemometrician
who dismissed some of our compositional ideas as unimportant. His primary
encounter with compositional data was in an experimental design setting, where
he basically chose certain points on that positive-orthant facet of the simplex in
an appropriately patterned way. When I tried to explain that designed variability
and observed variability were two different things, it became clear he thought
the discussion had degenerated to statistical semantics. In fact, they are two
quite different things. A good design plan will place points on that facet in a
particularly organized way – obviously – since that is why you are designing
the points. When one is generating chromatograms and scaling them by total
peak height, that observed variability across samples is far less likely to have a
nice scatter in that confined space. Indeed, they are much more likely to form
those banana-shaped patterns that Aitchison discusses in an introduction to the
field. It is those kinds of common compositional scatters that can lead to analysis
mistakes. This is still very much an open area (within chemometrics) and I would
encourage young statisticians working in the area to consider the potential that is
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still here to educate, and develop better techniques, particularly techniques that
take better advantage of the computing that we have now, but did not have twenty
years ago.

While working with these compositional data problems it became clear to
me that the negative bias issues mentioned above were a part of the much larger
problem of how to model rich dependence structures on a simplex. I worked on
these problems with a colleague, Dr. Cidambi Srinivasan, and we derived the
dependence structures of a family of simplex distributions known as the Liouville
family (13). I then partnered with another student (Dr. Brian Smith) and we
developed other classes of parametric distributions on the simplex, derived from
the Liouville family, but having richer dependence profiles (14, 15). In fact, there is
still work here to be done in statistics. Asmost statisticians will know, the so-called
Dirichlet distribution is still being used everywhere in Bayesian analysis as a prior
(closed of course) because of its nice conjugate properties. It has long been known,
though it seems not widely so, that the Dirichlet distribution embodies a kind of
“maximum” independence (in the abstract language of that area). So, in that sense
it is perhaps a rather odd choice for a prior in many of the instances it is being used.

It should be noted that the adverse effects of closure on higher dimensional
data may or may not be as dramatic as with lower dimensional data. This is
research yet to be done, however. A proper investigation of this would require one
to vary many things, including the number of features, the number of samples, the
degree of separation among the groups (for grouped problems), and the measures
used to evaluate the quality of the results, to name just a few.

Partial Least Squares and Discriminant Analysis

I end this chapter by revisiting some of mywork in partial least squares, and in
dimension reduction for the purposes of discrimination. This is probably the area
I am most identified with in the chemometrics literature and it has occupied most
of my work over the last 10 years. Before summarizing that work, it will be useful
to briefly discuss a fundamental difference that sometimes surfaces between how
classically trained statisticians and other chemometricians think about exploratory
multivariate techniques. When a statistician works with an exploratory technique
such as principal components, or canonical (linear) discriminant analysis, or partial
least squares, we think of these techniques as having been produced, and hence,
validated by some form of constrained optimization problem. And the language
and precise statement of that problem matters. For example, PCA results from
solving the problem of finding the optimal set of weights that can be used on
the original variables to define a new linear compound (score). As we all know,
that first new variable is chosen in such a way as to have the maximum variance
possible within the paradigm that it has to be formed as a linear combination of
the original features. What about the second score? The weights defining that new
variable are chosen in such a way that its variance is maximized - subject to the
constraint that this new score has to be uncorrelated with the first one. Or is it that
the second score is chosen in such a way that its variance is maximized subject
to that second vector of weights being orthogonal to the first vector of weights in
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the original variable space? And does it really even matter? For PCA of course
we know it does not matter. Both constrained optimization problems produce the
same results, and hence, any algorithm to produce one should also produce the
other. Unfortunately, PCA is nearly unique in that regard. Neither LDA nor PLS
enjoy that property for example.

The issue of what the underlying optimization problem really is – and
if that really matters - may perhaps still be one of the most misunderstood
multivariate issues in chemometrics research today. If you are a statistician
planning on working in this area you are going to find a lot of PCA-like, PLS-like
methodologies in the literature. You will need to grow to appreciate just how
well some of those work in practice. And you will need to learn to deal with your
frustration that they may not really technically be PCA or PLS at all, at least not
in the sense you want to think about those methods. I still routinely referee papers
for the area that will use a common algorithm for PLS but then make optimality
claims that would really only apply if a different set of constraints had been
imposed on the original optimization problem, constraints that are not addressed
by that algorithm. I bring this up mostly so my brief description of some of my
work in this area, which may on the surface seem to just be focused on changing
a constraint set, can be better understood.

Let us look at a couple examples in the realm of PLS in particular. In some
of my earlier work with Dr. Anders Andersen, an oriented version of PLS was
constructed and applied (16–18). Intuitively, the goal of the orientation was to
allow PLS to be directed away from certain types of variability - with the hope
of allowing it to focus more on the (co)-variability of interest. For instance, in
functional magnetic resonance imaging (fMRI) information in scans are often
confused by signals that come from boundaries, such as the between the brain
and skull, and open spaces, such as the nasal cavity. If the variability of the signal
in those areas can be well enough understood, then in theory an application of
PLS to those data could be orientated away from this undesirable signal and left
to focus more on the co-variability seen in the actual brain region being scanned.
Mathematically, this orientation arises from the way in which the original PLS
optimization problem is (further) constrained. This assumes of course that the new
problem, once posed, indeed has a mathematical solution. In this case, actually,
the solution was very familiar to statisticians. But to get there, we had to be able
to understand the sense in which PLS was already a constrained optimization
problem, infuse the additional constraints, and then derive the solution.

Likewise, when I partnered with another student, Dr. Kjell Johnson, to
develop formal statistical influence functions for PLS, we quickly realized that
we were going to have to develop very different methodologies depending
on whether we started with the intention of producing uncorrelated scores or
producing orthogonal directions (19, 20). Those problems, at their core, are not
just trivially different. They are fundamentally different. Even the well-known
solutions to Fishers LDA optimization problem - maximizing among-groups
variability relative to pooled within-groups variability - are only “correct” if
one is invoking (usually unsaid and often unknown) a kind of within-groups
uncorrelated scores constraint. There is no claim to orthogonal directions in the
original feature space (like you get for free with PCA). Indeed, much of my work
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with PLS and variants of PLS are firmly grounded in trying to understand the
role of various constraint sets. Granted this may have created some headaches for
chemometrics reviewers over the last couple of decades, but the headaches were
mutual as I had to also learn to appreciate the gains from chemometric techniques
that were PLS (or LDA or whatever) in spirit if not in mathematical detail - even
as I mourned the loss in clarity of structure. I suspect this is exactly the kind of
headache that Dr. Kowalski wanted to create.

With this introduction as backdrop, I want to briefly summarize some of
my work that is directly related to PLS and dimension reduction for purposes of
discrimination. In the early 1990s it was clear to chemometrics researchers that
PLS in general did a better job of separating groups than did PCA. Using PLS was
an option when you had the luxury of knowing your group structure in advance
and you simply coded that structure in what seemed to be reasonable way. No
one seemed to know why, or at least no one had articulated mathematically why
PLS seemed so effective at this task. Making this even more confusing was the
fact that some papers in the field used PLS for classification problems directly,
even when (as statisticians well know) Fisher’s LDA was both defined (on a
low-dimensional problem) and optimal. Worse, of course, are those papers that
still appear using PCA for classification when a group structure is known. But
that is a topic for another time! In any case, I set out to look into the relationship
between PLS and discriminant analysis in the early 2000s with another student,
(now) Dr. Matt Barker (1). It was clear from the outset that any connection
would be between PLS and Fisher’s LDA (canonical discriminant analysis)
since LDA also arose from a constrained optimization problem, and at least
employed matrix constructs that were part of the same vernacular as did PLS. Dr.
Barker and I ended up establishing a fundamental connection between the two
(Fisher’s LDA and PLS), showing in essence that the engine that makes PLS go
(when coded for classification) is essentially the among-groups sums-of-squares
and cross-products matrix from Fisher’s LDA! Of course, the details of this
connection depended on how the PLS problem was coded for classification and on
the set of constraints attending the PLS problem. I believe this established the first
mathematically crystal clear understanding of the separating potential inherent in
the definition of PLS. I do not want to over-make this point since it is one ripe for
misinterpretation and, even worse, can be seen as too self-serving, but I do think
that this way of thinking (e.g. dependence on coding, dependence on constraint
set) is not necessarily a natural way for a chemist to think, though it may now be
a natural way for a chemometrian to think. Dr. Kowalski’s purposeful blending
of the field, like it or not, is probably responsible for that kind of thinking now
being common in our literature.

The real import of my work with Barker is sometimes still misunderstood
though. If one has a known group structure and is intent on doing linear
discrimination, then LDA is what you should use if it is defined. It is optimal
in a sense that one can articulate, and statisticians like to be able to say in what
sense a methodology is optimal. It does not really make sense to use PLS for
that kind of problem, because PLS is going to be suboptimal. In fact, Barker
and Rayens have offered examples of what can happen in those situations when
the “other part” of Fisher’s optimization problem (the inverse of the pooled
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within-groups sums-of-squares and cross-products matrix) is ignored, as it is
in PLS. This is still an on-going misunderstanding I see somewhat routinely in
chemometrics submissions. On the other hand, if one needs to do dimension
reduction first, prior to being able to actually apply Fisher’s LDA, or perhaps
any type of discrimination procedure, ad hoc or well-known, then it becomes
undeniably clear that PLS is how you want to do that dimension reduction, and
not PCA. When an author argues “it does not matter which one you use”, that
kind of statement can usually be mapped to a situation where the original total
variability was dominated by the among-groups, so that PCA was, in effect, also
focusing on discrimination at the dimension reduction stage. Otherwise it has to
matter. The mathematics of the underlying optimization problems guarantee that
it will. These are precisely the type of constructive conflicts that Dr. Kowalski
enabled all those years ago.

I more recently partnered with another student (Liu) and others to extend what
Barker and Rayens started (21–23). In those papers we both showed in what sense
the full Fisher’s LDA is a special case of a kind or “oriented” PLS (mentioned
above), really just the original PLS optimization problem subjected to a different
kind of constraint set. Perhaps more importantly we extended these ideas to
the situation where the original covariance arrays are heterogeneous, hence the
situation that classical statisticians would recognize as more appropriate for
quadratic discrimination than for linear discrimination. Of course, that statement
alone can be very confusing since quadratic discrimination was developed in
the realm of misclassification probabilities and Mahalanobis distance. There
was no sense of “quadratic” discrimination in Fisher’s original canonical
discrimination problem. But the fact remains that it is not always optimal to
use a pooled form of the within-groups sums- of-squares and cross-products
matrix to do discrimination. The question Liu and I asked was what if you step
outside of the Fisher LDA context and classify the transformed results using a
standard misclassification probabilities paradigm. What then is the best PLS-type
transformation available to do that initial dimension reduction step? It turns out,
of course, that those arguments had to be made not as constrained optimization
arguments, but necessarily as misclassification rate arguments. Neither of these
last two works appeared in chemometrics journals so they may still be largely
unknown to that community. However, there is a fair amount there that would be
immediately useful if redeployed within chemometrics.

Summary

In this brief chapter I have tried to offer a coherent cross-section of my 25-plus
years of work in chemometrics. I have left out many interesting collaborations,
including those in the neurosciences, and particularly those with Dr. Barry Lavine,
with whom I have enjoyed a 25-year professional friendship. We have visited each
other’s institutions and homes, and generated more ideas together - as a chemist
and a statistician - than we could ever possibly work on. I want to thank Dr. Lavine
for asking me to write this chapter. But most of all I want to acknowledge Dr.
Kowalski and the legacy he created, one that was maintained for decades thanks to
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Dr. Steven Brown, and continues today, a legacy of robustness through academic
diversity.

I am now largely an administrator, having served at both the departmental and
university levels, but I have immensely enjoyed being a part of the chemometrics
community. I have seen both statisticians and chemists in the field defy the odds
and win promotions at all levels at their institutions, even as they have had to
sometimes educate their less outward-looking colleagues. I have no idea if Dr.
Kowalski thought he would be setting so much in motion with his open invitation
to non-chemists back in the 1980s. Indeed, aside from a short visit with him in
the very early 1990s I did not know him personally. I cannot say what kind of
person he was or even what kind of a scientist he was. But I do know and want to
acknowledge that careers were made possible, families were fed, kids were sent to
college, all because of a dynamic that Kowalski set in motion nearly thirty years
ago. I would even venture to argue that the reason chemometrics has survived
for thirty years is because of the strength the field developed as a result of the
cross-disciplinary diversity it fostered and then embraced.
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Chapter 3

The Errors of My Ways: Maximum Likelihood
PCA Seventeen Years after Bruce

Peter D. Wentzell*

Department of Chemistry, Dalhousie University, PO Box 15000, Halifax,
Nova Scotia B3H 4R2, Canada
*E-mail: peter.wentzell@dal.ca

The evolution of maximum likelihood principal components
(MLPCA) and related techniques is described from a personal
perspective, highlighting the author’s collaboration with Bruce
Kowalski and others. Topics include the motivation for
the development of MLPCA, error structures in analytical
measurements, and the theoretical principles behind MLPCA.
The developments in the field are reviewed and future
challenges are outlined.

Introduction

To say that Bruce Kowalski was a leader in the field of chemometrics is
certainly an understatement. All of the participants in the symposium from
which these chapters are drawn have particular memories of the man who was
the motivation for the gathering. For me, Bruce was a catalyst who was able
to bring together creative minds in a symbiotic environment, giving birth to
new ideas that extended like the spokes on a wheel. The purpose of the present
undertaking is reflect on the genesis and growth one of those spokes from a
personal perspective, and Bruce’s role in this process. The challenge is to weave
the right balance of science and personal narrative so as to make this article both
useful and insightful. To this end, I will take the rather unscientific approach
of chronicling the evolution of ideas that led to the development of maximum
likelihood principal components analysis (MLPCA) and the parts that Bruce and
others played in this. I will follow this with a brief discussion of how this line
of research has grown since then, and the challenges for the future. Given the
context of this work, it will no doubt have less rigor than some other treatments

© 2015 American Chemical Society
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and will be rife with the first person. However, it is hoped that this perspective
may give new insight into the human element of the scientific subject matter that
may be lost in other work.

Errors in Analytical Measurements
Univariate Measurement Errors

From the very beginning of chemical metrology, the estimate of uncertainty
has been recognized as an integral part of the analytical measurement, reflecting
its information content and therefore its value. The concepts of precision and
accuracy are introduced early in our chemical education (1), albeit usually in
relatively simplistic ways because the complex statistical framework from which
they are derived is beyond our appreciation at that point. Even for the simple
case of an analytical concentration derived from a univariate measurement, a
sophisticated lexicon has emerged to describe the estimation of uncertainty that
incorporates experimental design, error budget assessment and the evaluation of
figures of merit (2). Although such topics typically provoke less enthusiasm in
most than the analytical measurement itself, they are nonetheless critical in the
practical reporting of analytical results.

In the estimation of uncertainty of analytical concentrations based on
univariate measurements, approaches are typically based on replication, error
propagation, or a combination of both. Complete replication of analytical
procedures through nested designs at multiple levels has the advantage of
dissecting all of the sources of variance, but is often impractical. Moreover,
without the use of error propagation methods, such approaches may not offer
insights into limiting sources of error or allow the estimation of figures of merit
such as the limit of detection (LOD). As analytical instrumentation developed
increasing levels of sophistication in the latter half of the twentieth century, there
was a greater interest in understanding the origins of measurement errors and how
these affected concentration estimates, with a view toward improving the quality
of results through better design of instruments, experiments, and data treatment
methods. By the time I entered graduate school to work with Stan Crouch at
Michigan State University in 1982, the groundwork for this had already been
established by my academic forebears in this and other laboratories. One of these
was Jim Ingle, who had carried out rigorous error analyses on a number of widely
used analytical systems (3–5). Many of these eventually appeared in the book
Spectrochemical Analysis (6), which stands out for its treatment of the concepts.
Thus, there was an emerging systems view of analytical science, further inspired
by influences that ranged from the philosophical writings of Robert Pirsig (7) to
the growing field of chemometrics (8–10).

The terms “error”, “uncertainty” and “noise” are sometimes used
interchangeably in the discussion of analytical precision, but the distinction is
important. The first, of course, refers to the difference between a measured value
and a “true” value, typically represented by a defined population mean, while
the second is a statistical characterization of the first, usually quantified either
directly or indirectly through the error variance. Finally, use of the term “noise”
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generally implies an ordered series of errors with particular characteristics (e.g.
photomultiplier noise, drift noise) even though a univariate measurement is a
single sampling of this sequence.

For univariate analytical measurements, there is generally an assumption of
normality in the distribution of errors, reasonably supported by the Central Limit
Theorem. Likewise, for a group of measurements (e.g. calibration samples)
an assumption of independence in the errors is not unreasonable. Finally, a
condition of uniformity in the error variance for a series of measurements (i.e.
homoscedastic errors) is often assumed, leading to a generic characterization of
the errors as “iid normal”, or independent and identically distributed with normal
distribution. Coupled with an assumption of negligible errors in the reference
concentrations for calibration samples (a reasonable inference for carefully
prepared standards), this scenario fits the well-established framework for linear
least squares regression widely used to model instrument response functions.
Under the prescribed conditions, least squares produces the so-called maximum
likelihood solution, meaning the model for which the observed data lead to
the highest value for the joint probability density function. The well-described
statistical properties of these estimators can then be extended to establish
prediction intervals for unknown samples and evaluate figures of merit such as
the LOD. When the assumption of homoscedastic measurement errors is violated
and measurement error variances are non-uniform (i.e. heteroscedastic errors),
these models can be extended by weighted least-squares methods assuming that
an appropriate variance estimation function can be found (11). These retain the
principles of maximum likelihood estimation, as illustrated in Figure 1.

Figure 1. The principle of maximum likelihood estimation illustrated through
weighted regression. The fit parameters maximize the product of the probability
density functions of the observed points, as shown at the right of the figure.

Multivariate Measurement Errors

The rapid development of analytical instruments and computer hardware in
the 1970s and 1980s led to the routine acquisition of vectors of measurements
such as spectra and chromatograms. When I entered graduate school (a few years
prior to the widespread commercial availability of personal computers), the first
project undertaken by many incoming graduate students was the construction of
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a microcomputer that would acquire the data from the instrument they would
ultimately design and use. As the capabilities of instruments expanded, analytical
scientists began to discover that they were no longer bound by the traditional
univariate calibration curve in terms of the kind of information that could
be extracted from measurements. This data-driven approach was pioneered
by a number of visionary groups, mainly in the USA and Europe, and intial
applications were focused on problems in classification, multivariate calibration
and modeling (10). Software tools were not yet widely available, but one of the
first was the Arthur software package from the Kowalski group (12). This was
distributed on magnetic tape (see Figure 2) and designed to run on mainframe
computers.

Figure 2. Prof. Roy Bruns (Universidade Estadual de Campinas, Brazil) displays
a copy of the ARTHUR program from 1981 at a meeting in 2013.

The initial applications of multivariate analysis to chemical measurements
often relied on well-established statistical methods that had found widespread
application in other fields, sometimes with adaptations to the peculiarities
of chemical systems. However, little attention was paid to the structure
of measurement errors in these applications and generally there was an
implicit presumption that the iid normal error structure assumed for univariate
measurements extended to the multivariate case. For the most part, this seemed
to work well, but the deficiencies in the assumptions became evident through
the variety of data preprocessing tools that were found necessary for different
types of data. In some cases, this required scaling of the data in certain ways,
while in others, the application of derivative filters or adjustment algorithms such
as multiplicative signal correction (MSC) were required to obtain satisfactory
results. This was a consequence of data-driven methods that were not also
error-driven.

Multivariate chemical data differ substantially from univariate data in the
assumptions that can be made about the error structure (13). These differences
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are reflected in the heteroscedasticity of the measurement error variances
and the correlation of measurement errors. For example, while univariate
measurements made on a single instrument may be mildly heteroscedastic due to
shot noise (e.g. fluorescence), this will not have a dramatic effect on univariate
calibration. However, a vector of data comprised of analytical measurements with
different ranges or units (e.g. trace element concentrations) can exhibit grossly
heteroscedastic behavior (on an absolute scale) that will impact variance-based
multivariate methods. Likewise, univariate measurements made on separate
samples are likely to exhibit independent errors, but the errors at adjacent channels
in the spectral or temporal domain are likely to have a statistical correlation
due to instrument characteristics (e.g. cross-talk, drift, filtering). To consider
multivariate measurement errors in a comprehensive way, it is necessary to admit
that it is possible for the error in each measurement to be correlated to some extent
with that for every other measurement. Since many multivariate data analysis
methods exploit correlations among the variables, the presence of correlation in
the error structure can affect the results.

Characterization of Multivariate Measurement Errors

There were two principal impediments to the adoption of “error-driven”
methodologies in the development of multivariate methods for chemical data.
First, there were no tools available to incorporate the measurement error
information into the data analysis. A second barrier was the practical difficulties
associated with characterizing the measurement errors. In the case of univariate
methods when errors can be assumed to be independent, a single variance can
be associated with each measurement, but the picture becomes more complex
for multivariate methods, where measurement error covariance needs to be
considered. These complications relate to the experimental challenges of
estimating the error structure, as well as the computational challenges of storing
this information.

There are two commonly used approaches to the evaluation of the error
structure in first-order (vectorial) measurements. The first is the Fourier transform
(FT) which has long been used to examine signals and noise in the frequency
domain (or, more generally, in the Fourier domain, since not all signals are
collected as a function of time). This a very useful tool in the broad classification
of stationary error sources, such as white noise or pink noise (1/f noise) through
the noise power spectrum (14–17). The latter classification is widely observed for
contiguous signal vectors in chemistry (e.g. spectra, chromatograms) and is often
described as drift noise or source flicker noise. Figure 3 shows examples of white
noise and pink noise sequences along with their corresponding amplitude spectra
in the Fourier domain. While the differences between the two types of noise is
evident, it is also noted that the amplitude spectra are quite noisy themselves since
they are subject to the stochastic variations of a single time sequence. In general,
accurate characterization of measurement errors requires many replicates, which
is often a significant experimental impediment.
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Figure 3. Examples of white noise and pink noise and their amplitude spectra
in the Fourier domain.

The role of low frequency noise sources, such as 1/f noise, is important
in data analysis since such sources often represent a dominant source of error
variance that is not easily eliminated. A good example of this is near-infrared
(NIR) reflectance spectroscopy, which became a more powerful tool with the
introduction of multivariate calibration to chemistry. Early work reported that an
advantage of this method was its high signal-to-noise ratio (S/N) (18). While this
is true when high frequency noise is examined, NIR methods often suffer from
multiplicative and offset noise effects which are not immediately evident and
require mitigation through various types of preprocessing.

Fourier analysis can provide some useful diagnostics, but it is limited in the
information it can provide for multivariate analysis. While many signals exhibit
a correlated error structure amenable to description in the Fourier domain e.g.
spectra), other data sets are not structured in this way (e.g. gene expression levels
in a microarray experiment). In addition, the amplitude spectrum does not make
apparent localized structures in the original domain, such as changes in error
variance (heteroscedasticity) that occur in the signal. Finally, the information in
the FT lacks the compatability for integration into most common multivariate
analysis methods.

An alternative to the Fourier domain description of multivariate measurement
errors is the error covariance matrix, Σ, which describes the variance and
covariance of all measurement errors in the vector x. If x is a row vector (1×n),
then the n×n error covariance matrix is defined by Equation 1.

In this equation, E designates the expectation operator and e (1×n) is the vector of
measurement errors, defined as the difference between the measurement vector x
and its population mean, μ (1×n). For this equation, x has been defined as a row
vector rather than a column vector (the more common statistical representation)
since matrices of chemical data are typical presented with the measured variables
along the columns and samples as the rows. A more practical definition of the
sample error covariance matrix based on N replicate measurement vectors, xi, is
given by Equation 2, where x̅ ̅̅ represents the sample mean.

36

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

3

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 

http://pubsdc3.acs.org/action/showImage?doi=10.1021/bk-2015-1199.ch003&iName=master.img-002.png&w=323&h=90


The error covariance matrix is to multivariate measurements what the error
variance is to univariate measurements, but it incorporates an additional level
of complexity. As is the case for univariate measurements, the characterization
of uncertainty in this manner is critically dependent on the definition of the
population, i.e. on what constitutes a replicate. For example, a replicate for
a spectroscopic measurement might constitute a repeated scan, or a scan after
replacement of the sample cell, or a scan after a complete work-up of a replicate
sample. For univariate measurements, changes in this definition will only change
the magnitude of the variance, but for multivariate measurements, this can
result in a complete alteration of the topology of the error covariance matrix.
For example, replacement of the sample cell between scans may reveal a large
contribution from offset error, a highly correlated error source, which may not
be evident for simple replicate scans. Therefore, it is important to define what
constitutes an error in the measurement and choose the replication accordingly.

In cases where the measurement vector has a natural order (e.g. wavelength,
time), visual examination of the error covariance matrix can reveal some
qualitative information about the error structure in the data. This is illustrated in
Figure 4, where the error covariance matrices that result from some commonly
encountered correlated error structures are shown as surface plots. The x and y
axes in these plots are the measurement channels and the z axis represents the
error variance (diagonal elements) or covariance (off-diagonal elements) for the
corresponding measurement channels. The plots are therefore symmetric across
the main diagonal. For the case of independent errors (not shown) these plots
would appear (ideally) as a diagonal ridge, with uniform values along the diagonal
in the case of iid normal errors. For correlated errors, however, the off-diagonal
elements are not zero. In generating these figures, a small amount of iid noise
was also added for computational reasons, but the dominant error sources are
as indicated. Offset noise is commony observed in chemical measurements, for
example when changes in cell position or baseline offset give rise to random
vertical shifts of the signal between replicates. This results in errors that are
completely correlated, yielding a flat error covariance matrix. Pink noise, or 1/f
noise, is commonly the result of so-called source flicker (e.g. low frequency
variations in a light source in optical spectroscopy) or more generally designated
as detector drift. The dominant low frequency components of such noise sources
results in covariance values that fall off with the distance between channels,
independent of the signal shape. Such noise can also exhibit a dependence
on signal intensity, as in the case of proportional 1/f noise. Such noise might
dominate in cases where the signal intensity is proportional to the source intensity,
such as in fluorescence, atomic emission or even mass spectrometry. In these
cases, the error covariance increases with the magnitude of the signals, as shown
in the figure. Another commonly observed error structure is multiplicative noise,
sometimes referred to as multiplicative offset noise, which is especially common
in IR and NIR spectroscopic methods based on diffuse reflectance. The changes in
the signal profile can be interpreted in a simple way as changes in the path length,
and therefore result in shifts that are proportional to the signal intensity. Although
fundamentally different from proportional 1/f noise, this results in a very similar
error covariance structure that depends on the magnitudes of the signals involved.
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Figure 4. Error covariance matrices for various types of error structures (as
indicated) applied to the signal profile shown at the top of the figure.

The error covariance matrix can give insight into the magnitude of the
interdependence of measurement errors, but the nature of the interdependence
(i.e. the degree of correlation) may be obscured in cases where the variance of
measurements is signal dependent. To get a clearer understanding of this, the
correlation matrix can be examined, where each element is given by Equation 3.

Here σij is the corresponding element of Σ, and σi and σj are the standard
deviations at channels i and j (extracted from the diagonal of Σ). By definition, the
diagonal of the error correlation matrix will be unity. The off-diagonal elements
will indicate the extent of correlation between the errors in the corresponding
channels, irrespective of the magnitude of the variance. The error correlation
matrices for the examples in Figure 4 are shown in Figure 5. For cases of offset
noise and 1/f noise, the correlation matrices appear the same as the covariance
matrices, since the errors are homoscedastic (same variance at all channels). For
the other two cases, some differences are observed. It should be noted that for
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these simulations, in which the error standard deviation is proportional to the
signal, a small amount of iid normal noise was added to make the data more
realistic in the limiting case where the signal goes to zero. For both sources of
proportional errors, the peaks in the error covariance surface become plateaus
in the error correlation map, reflecting the degree of correlation. In the case of
the multiplicative errors, the surface would be flat like that for the offset errors
except for the limiting effect of the small iid errors, which dominate when the
multiplicative errors become even smaller. This gives rise to the regions near zero
between the plateaus (since iid errors are uncorrelated) and the diagonal ridge.
The error correlation map for proportional 1/f noise has a similar appearance,
but the plateaus are not as flat and the the off-diagonal plateaus are not as high,
reflecting the diminishing correlation with channel number.

Figure 5. Error correlation matrices corresponding to the covariance surfaces
in Figure 4.

Although this kind of qualitative interpretation is useful, it is limited in reality
by a number of practical considerations. First, experimental error structures
typically result from a combination of error sources, each of which may dominate
in different regions. For example, a fluorescence signal may have contributions
from proportional 1/f noise due to source fluctuations, as well as shot noise
(uncorrelated, heteroscedastic) arising from the photomultiplier and offset noise
originating from shifts in the baseline. A second consideration is the reliable
estimation of the covariance matrix. Estimates of variance and covariance are
inherently uncertain in the absence of a large number of replicates, resulting in a
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substantial amount of “noise in the noise”. Moreover, the noise in the covariance
matrix is heteroscedastic, further complicating a clear interpretation. For the
simulated examples presented here, 100 replicates were generated, but this is
clearly impractical for most experimental measurements. Nevertheless, the error
covariance matrix is at the core of the theoretical framework for the maximum
likelihood methods described here, so the issue of its estimation will be set aside
for the moment.

Maximum Likelihood Principal Components Analysis
A Pilgrimage to Seattle

My own less-than-formal introduction to the discipline of chemometrics
began in graduate school, some of which was provided by my mentor, Stan
Crouch, who dabbled at the edges of the field. However, much of the credit for my
initiation has to go to a fellow student, Tom Doherty, who had a voracious appetite
for scientific literature and would often engage me in extended discussions on
works that he had discovered. Two of these stand out in my mind: Richard
Hamming’s Digital Filters (19), which set into motion a fascination of signals
and noise, and Edmund Malinowski’s Factor Analysis in Chemistry (20), which
opened up the world of multivariate modeling with its clear descriptions of a
complex subject. Around that time I also began following Steve Brown’s work
on Kalman filtering, which integrated the concepts of modeling and noise (21).
Of course, I was aware of the work coming out of Bruce Kowalski’s group, but
for some reason it seemed too “hard core” and above my level of comprehension.

Following my post-doctoral research at the University of British Columbia
with Adrian Wade, whose work in chemometrics had more of an applied flavor,
I moved to my current position in 1989. I continued to work in Kalman filtering
and tried to make connections with principal components analysis (PCA) (22). I
was conscious of the limitations of PCA, particularly with regard to the lack of a
consistent approach to preprocessing. Many strategies for pretreating data seemed
to be mainly trial-and-error or based on ad hoc rules. I became convinced that
the key to understanding this resided in the error structure of the measurements. I
discussed this with Steve Brown at a conference in Utah in 1994 and he pointed
me in the direction of the errors-in-variables literature, which was helpful but
somehow disconnected from the PCA framework around which so much of
chemometrics was built.

I first met Bruce Kowalski when I presented a seminar at the University
of Washington early in 1995. One of my former students, Steve Vanslyke, was
doing post-doctoral work with Bruce and had engineered my visit. I was rather
intimidated as I did not regard myself as a serious chemometrician at the time and
felt that Bruce could easily expose my ignorance. He was a figure who loomed
larger than life in my perception but, as I was to find out, he was also someone
who saw the potential in new ideas. We made arrangements for me to spend six
months of my sabbatical in Seattle, starting in January of 1996. For me, it felt
like spending time in Bruce’s lab would somehow legitimize me in the field of
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chemometrics. I can’t say whether my visit actually achieved that goal, but it was
an entirely memorable and productive sabbatical.

Figure 6 is a photograph of the Kowalski groupmembers at the time I departed
in June of 1996. Notably absent from the group picture is Klaas Faber who was
doing post-doctoral work with Bruce at the time. Klaas’s role in the work that I
carried out in Seattle was critical, and it is safe to say that it would not have come
to fruition in that time period without his help. This is illustrative of one of Bruce
Kowalski’s greatest talents, which was the ability to bring together creative minds
and inspire them in creative synergy. Klaas and I ate lunch together most days
and I soon came to appreciate his encyclopedic knowledge of the literature. He
would often point me towards research that was unknown to me and through him
I became more familiar with the statistical literature and the text of Magnus and
Neudecker on matrix differentials (23). At key points in the development of the
algorithm where I became stuck, it was often Klaas who was able to push me in
the right direction. What follows is a description of the evolution of these ideas.

Figure 6. Kowalski group members in June of 1996. Left-to-right: Cliona
Fleming, Stephen Vanslyke, Chris Stork, Paul Mobley, Astrid Perez-Clark, Bruce

Kowalski, Dave Veltkamp, Peter Wentzell.

The Many Faces of PCA

Perhaps one of the most challenging aspects of learning chemometrics for
the novice is understanding the principles of PCA. Since PCA (and the concept
of latent variables in general) is at the core of many methods for exploratory data
analysis, classification. multivariate regression, and mixture analysis, a clear
understanding is essential for establishing a foundation of knowledge. However,
this can be complicated by the various motivations and interpretations of the
method in different contexts, which obscure the differences between what a
technique is and what it is intended to do. This extends back to what are generally
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attributed to be the early origins of PCA. In 1878, Adcock provided what is
arguably the first description of the extraction of the first principal component
in a two-dimensional space when he developed a method for orthogonal least
squares (24). In 1901, Pearson independently extended this concept to fitting
planes (or hyperplanes) in a multidimensional space (25). Hotelling’s description
in 1933, also independently conceived, was intended to describe the multivariate
normal distribution of independent factors for correlated variables (26). Further
confusion arises from the subtle but important distinction between PCA and
factor analysis (FA) and the implementation of PCA through singular value
decomposition (SVD).

To be clear, PCA itself defines a method for describing multivariate data in
a new space where the new axes result from a rotation of the original axes such
that each successively generated basis vector (principal component) accounts for
the largest amount of variance in the data not accounted for by the preceding
basis vectors, while maintaining orthogonality of the axes in the new space. As
such, the new variables (principal components, eigenvectors, loadings) and their
values (scores) conform to certain mathematical properties (e.g. orthogonality)
that are often convenient. SVD describes an algorithm for extracting these
principal components and is therefore essentially synonomous with PCA aside
from some notational differences. PCA is one way of performing FA, but the
latter encompasses a broader range of methods used to model multivariate data.

There are essentially three motivations in the application of PCA to
multivariate chemical data. The first, consistent with Hotelling’s description, is
to provide the parameters associated with the multivariate normal distribution of
latent variables describing the samples. This finds application in areas such as
multivariate statistical process control (MSPC) and defining class boundaries in
classification by SIMCA (soft independent modeling based on class analogy).
However, many applications in chemistry do not involve single multivariate
normal populations (e.g. designed experiments, multiclass separation, kinetic
studies). A secondmotivation is dimensionality reduction or variable compression
for exploratory data analysis (visualization), classification, or multivariate
calibration. In such cases, no model is necessarily implied, but the minimization
of residual variance is a convenient (even if sub-optimal) method to preserve
information in the data. Finally, consistent with Pearson’s description, PCA
can be used for subspace modeling in cases where there is an underlying model
defining a hyperplane. This is the case for chemical mixture analysis methods,
such as multivariate curve resolution (MCR) and certain instances of multivariate
calibration. In these cases, there is a well-defined rank for the underlying model
(pseudorank). In MCR, this rank will be equal to the number of independently
observable chemical components. For multivariate calibration, this interpretation
of PCA is only applicable in cases where there is a defined number of mixture
components (e.g. in a pharmaceutical preparation). PCA is still applied for
calibration of more complex mixtures (e.g. foods, petroleum products), but in
these cases the primary objective is dimensionality reduction rather than subspace
modeling.

Of these interpretations, only the first and the third have defined models
that lend themselves to optimization in a maximum likelihood context. The
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second interpretation of PCA as a general tool for dimensionality reduction does
not impose a pre-existing model on the system and application in this manner
may have a variety of objectives. While PCA may serve these ends well, other
approaches such as variable selection or projection pursuit (PP) may provide
superior results for a particular application.

In the modeling of multivariate normal distributions (i.e. the first
interpretation), PCA will provide the optimal estimation of the underlying latent
variables when there are no measurement errors, but when such errors are present,
the situation becomes more complex. In such instances, the distributions of
the variables are convolved with the distributions of the measurement errors
and, since PCA only considers total variance, it will not give the most accurate
representation of the latent variables. To solve this problem, Lawley and Maxwell
devised maximum likelihood common factor analysis (MLCFA), or simply
common factor analysis, to model multivariate distributions in the presence of
measurement errors (27, 28). In addition to assumptions of multivariate normality
in the variables, their model assumes iid normal measurement errors and provides
an estimate of the variance of those errors. While there are a few applications of
this method in chemistry (29, 30), for the most part chemical data do not satisfy
the underlying assumptions of multivariate normality and this approach is not
likely to perform better than PCA in the majority of applications.

The principal focus of our work in this area has been in the domain of subspace
modeling (i.e. the third interpretation of PCA), specifically how to obtain the
best estimate of the hyperplane containing the underlying model given known
characteristics of the measurement errors. At the time I travelled to Seattle, it
had been well known that PCA provides the optimal subspace estimation (in a
maximum likelihood sense) for cases of iid normal errors, but its deficiencies for
more complex error structures had not been addressed. When I arrived at the
University of Washington, it was my objective to formulate a more generalized
form of PCA that would provide optimal subspace estimation for diverse types of
error structures.

It is important to note, in hindsight, that in spite of its name, MLPCA is
neither “maximum likelihood” nor is it PCA. Since PCA, by definition, describes
a particular decomposition of the data based on variance, any method that
does otherwise cannot be PCA, nor will it share all of the properties of a PCA
decomposition. Moreover, PCA provides a full set of basis vectors describing the
data, even if these are subsequently truncated, whereas MLPCA only makes sense
when the number of basis vectors extracted is equal to the rank of the underlying
model. For these basis vectors to provide a maximum likelihood estimate of the
subspace, the model must be linear with a known dimensionality and the error
covariance structure should be exactly known. While the first condition may be
met, the second is virtually impossible to achieve and we must generally rely on
estimates of the measurement uncertainty rather than population information. For
this reason (which has been pointed out to me by numerous statisticians), MLPCA
cannot be considered to be a true maximum likelihood method. At the time,
however, the name seemed to fit and embodied at least the goals of the method,
which were to provide (almost) optimal subspace estimation in a PCA framework.
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Maximum Likelihood Subspace Estimation

The underlying bilinear model for chemical mixture problems can be
expressed in a number of equivalent forms. Here, for reasons of mathematical
convenience, the general representation is presented as Equation 4 in a manner
consistent with SVD notation for a truncated model of rank p.

Here,D (m×n) is the datamatrix,Vp (n×p) is a set of p (p<m,n) orthonormal loading
or basis vectors in the column space of D, T (m×p) is a set of orthogonal score
vectors describing the coordinates of the objects (rows of D) in the subspace, and
E (m×n) is a matrix of residuals. The matrix Tp can be further decomposed into
the product of an orthonormal matrix, Up (m×p), and a scaling matrix, Sp (p×p).
Although the notation for the latter decomposition is borrowed from SVD, it is not
meant to imply that SVD has been carried out; it is simply a convenient way to
describe the subspace.

The rotational and scale ambiguities of this decomposition are well-known
and, without imposing constraints, there are an infinite number of basis vectors
that can define the subspace, even with orthogonality imposed. PCA uses the
amount of variance captured to uniquely define the loadings. MCR relaxes the
orthogonality constraint, but applies other constraints (e.g. non-negativity) to
restrict the solution. For the moment, however, no such constraints are imposed
here.

Regardless of the representation of the bilinear model, it is important to
distinguish between the (true) underlying model and the method used to estimate
this space (e.g. PCA, SVD, MCR, etc.). To obtain, the “best” model, principles
of maximum likelihood estimation are often imposed. As with regression, this
approach maximizes the probability density function (PDF) for the observed
values. In the general case, there there are no presumed constraints on the
distribution of scores or loadings, so the PDF of interest is that of the residuals.
For simplicity, it will initially be assumed that there is no correlation of the errors
between the objects (rows of D, di●), but that errors within a row vector may
be correlated and/or heteroscedastic, characterized by the row error covariance
matrix Σi (n×n). This situation is consistent with many analytical measurements
in which the rows represent different samples and columns represent a set of
variables (e.g. spectral intensities at different wavelength channels). In this case,
the PDF for the residual vector is given by

where ei● is a row vector of E and Σi is the corresponding known error covariance
matrix for object i. The residual vector is defined as

where d̂ ̂î● is the measurement vector estimated by the model.
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Maximum likelihood estimation of the model can be viewed as a two step
procedure (a so-called expectation-maximization, or EM, algorithm). In the first
step, the model (i.e. the basis vectors in Vp defining the subspace) is assumed
to be known, and the question posed is: “What is the value of d̂ ̂î● that gives
the largest PDF in Equation 5 for each row of D?”. In other words, we want to
know the best projection of di● onto the assumed model. It can be shown through
the application of matrix calculus that this is defined by the so-called maximum
likelihood projection, given by Equation 7.

Notwithstanding potential complicating issues such as knowledge of Σi or its
possible singularity, this equation gives the “best” projection of the objects into
the assumed subspace. Under conditions where Σi is a multiple of the identity
matrix (iid normal errors), this turns into the orthogonal projection used by PCA
to generate estimates of the measurements.

The definition of the maximum likelihood projection is important because
it generalizes the optimal projection of data onto the model and establishes the
principle that this projection is not necessarily the same for all measurement
vectors. In this way, it uses prior knowledge about the errors in each measurement
vector to make optimal use of the individual elements of the vector, exploiting
redundant information in the data structure by emphasizing those dimensions of
the error covariance matrix with the smallest uncertainty. In other words, the
modeling is error-driven as well as data-driven.

Once the optimal estimates of the measurement vectors have been obtained,
a likelihood function can be defined based on the PDF given in Equation 5.

The second part of the algorithm involves maximizing this likelihood function
subject to the selection of basis vectors in Vp. As is usual in such cases, the
negative log-likelihood function is minimized instead, leading to the objective
function given in Equation 9.

This is a generalization of the usual sum of squares to the case of correlated and
heteroscedastic errors. In the case of iid errors, this minimizes the sum of squares
of orthogonal residuals (truncated PCA solution). In the case of uncorrelated
errors, Equation 9 reduces to Equation 10, where each residual is weighted by
the inverse of the measurement variance.
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While the derivation of Equations 7 and 9 are relatively straightforward and allow
the problem to be defined, the search for the optimum subspace model is a more
challenging problem.

Alternating Least Squares

When I first arrived in Seattle in 1996, much of my initial effort was
directed towards finding ways to optimize the subspace model for heteroscedastic
independent errors, subject to Equations 7 and 10. This was complicated by
the large number of variables to be optimized, my lack of familiarity with the
practicalities of nonlinear optimization methods, and the rotational degeneracy
in the solution space. Increasingly complex implementations of conjugate
gradient methods and other strategies were slow, non-convergent and entirely
frustrating. After many weeks of this, the idea of implementing alternating least
squares (ALS) emerged. I can’t remember how this came about, but it was likely
suggested by Klaas Faber in one of our many discussions and perhaps inspired by
the residual spirit of Roma Tauler, who had visited Bruce’s lab a few years earlier
and developed the constrained ALS approach to MCR (31).

Although somewhat different from its implementation in MCR, in hindsight
the application of ALS to MLPCA, which is described in the original publication
and elsewhere (32, 33), was a natural strategy. The basic principle underlying the
application, as in the case of MCR, is the symmetry of the bilinear decomposition.
If the data matrix in Equation 4 is transposed, the resulting equation is

For PCA/SVD the projected data can be obtained either by projection of the rows
into the column space or the columns in the row space, since both projections
are orthogonal. However, for maximum likelihood subspace estimation, the
projection matrix will generally be different in each subspace, since the row error
covariance matrix will be different from the column error covariance matrix. For
the solution to be valid, the row and column projections must lead to a consistent
estimation of D, and it is this constraint that is applied to the ALS implementation
of the MLPCA algorithm.

The MLPCA algorithm is implemented as illustrated in Figure 7. An initial
estimate of the column space,Vp, is obtained, typically using SVD (although other
methods could also be used). Note that this requires that the dimensionality of
the subspace (pseudorank), p, be known in advance. The measurement rows are
then projected into the column space using the maximum likelihood projection
in Equation 7 (or alternative equations, as discussed below) and the known (or
estimated) error covariance matrix for each row. PCA (SVD) is then carried out
on the projected data matrix, D̂ ̂,̂ extracting new estimates for Up, Sp and Vp. In the
next step, a maximum likelihood projection of the columns of the original data are
projected into the row space defined byUp. To do this, an analog to Equation 7 can
be used in conjunction with the column error covariance matrices,Ψj, as presented
in Equation 12.
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The column error covariance matrix, Ψj, is defined in a manner analogous to the
row error covariance, Σi, except that the column vectors ofD are used as indicated
in Equations 13 and 14.

Here, di● indicates row vector i of the data matrixD, d●j indicates column vector j,
and μi and μj are the population mean vectors for row i and column j, respectively.

Figure 7. Alternating least squares algorithm for maximum likelihood principal
components analysis, in which the data are alternately projected into the row

and column spaces.

Following the maximum likelihood projection of the data into the row space
defined by Up, SVD is carried out on the projected data D̂ ̂̂ to generate a new
estimate of the column space Vp, at which point the process is repeated, using
Equation 7 to project the data into the new column space. The principle behind
the ALS algorithm is that, upon convergence, the maximum likelihood projections
into the row and column spaces should result in the same projected data matrix
and the objective function given in Equation 9 (or analogous equations) should be
minimized.

The ALS method described by the above procedure proved to be the simplest
and most straightforward method to implement MLPCA. However, problems
with this basic implementation soon became apparent. Although the algorithm
worked well with independent, heteroscedastic errors and simple correlated error
structures, more complex correlated errors were problematic. To understand this,
a more detailed examination of common error structures was required.

Classification of Measurement Error Structures

Themeasurement error covariance structures commonly encountered for two-
way data are represented in Figure 8, which shows a cartoon characterization of
six general situations. The connectivity of the individual elements (boxes) in each

47

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

3

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 

http://pubsdc3.acs.org/action/showImage?doi=10.1021/bk-2015-1199.ch003&iName=master.img-020.jpg&w=323&h=110


case indicates their independence or correlation, and the color patterns indicate the
relationships among the errors in the different rows of the data matrix. Although
six cases are shown, in reality there are nine, since there can be an analog to case
B in which there is a common pattern of heteroscedasticity down the columns,
or analogs to cases D and E in which the errors are correlated only along the
columns. In these cases, however, the matrix can always be transposed with no
loss of generality in the solution, so they are not considered separately.

Figure 8. Common error structures observed for two-way data sets. (Adapted
with permission from reference (33). Copyright 2009 Elsevier.)

Three of the six cases shown involve independent errors and three involve
correlated errors. In addition, the MLPCA model for three of the cases (marked
with an asterisk) can be obtained directly without resorting to the ALS algorithm.
Case A represents the trivial case of iid normal errors, for which the MLPCA
solution is the same as the PCA solution, the latter being a special case of
the former. Case B is a special case of independent errors in which all of the
measurements within a column (or a row) have a common error variance. This
occurs fairly often in practice, at least to a first approximation. For example, this
might be the case when the columns represent distinct univariate measurements
with different units (e.g. trace element concentrations), but with a uniform
uncertainty for measurements of a given type. Under these conditions, case B
can be reduced to case A by simply scaling each column by the inverse of its
measurement standard deviation. Traditional PCA can then be applied to obtain
the maximum likelihood model in the scaled space. The MLPCA model in the
original space can be obtained by generating the PCA projection truncated to
rank p, rescaling the projected data to the original space, and applying PCA to
generate the rank p estimates of scores and loadings. In traditional applications of
PCA, case B is typically dealt with through the use of range scaling or autoscaling
(scaling by the standard deviation of each column) in the data preprocessing
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regimen. This is a rather crude approach, since it essentially assumes that the
measurement errors represent a constant proportion of the signal range.

Case D is another situation that can be handled through appropriate
pretreatment of the data, although it is less obvious. In this case, the errors are
correlated within the rows, but the samples are independent. Additionally, the
error covariance matrix is the same for each row. This situation is frequently
encountered in cases where sample spectra show a high degree of similarity and
are dominated by common sources of correlated errors, such as in IR or NIR
spectroscopy. Conceptually, the data are first rotated in the original space to
align the common error covariance matrix with the new axes. This effectively
removes the correlation and reduces the data to case B. Scaling of the columns
then reduces this to case A, at which point traditional PCA can be applied and the
rank p projected data can be obtained. After reversing the scaling and rotation
for the projected data, the MLPCA solution in the original space can be obtained
in the same way as for case B. The mathematics for this procedure has been
described elsewhere (33–35).

Just as case B has been traditionally dealt with by autoscaling, a variety
of preprocessing methods have evolved over the years to treat case C data,
particularly in the areas of IR and NIR reflectance spectroscopy. One approach
is to apply derivative filters to the spectra, which has the effect of reducing
correlated errors and making the data more consistent with case A. While this
is somewhat effective, it also has some undesirable characteristics and has been
shown to be sub-optimal in the treatment of errors (35).

It is important to note that theMLPCA solution gives the maximum likelihood
estimate of the rank p subspace that describes the data, but (except in case A), it
cannot be interpreted in the same way as the PCA solution in the original space.
For example, the variance captured by theMLPCA loadings will not be the same as
for PCA, since the error variance has been segregated from the chemical variance,
so traditional diagnostics based on variance do not apply. Also, estimates of the
data can be generated from the product of scores and loadings (D̂ ̂̂ = UpSpVpT), but
cannot be generated by an orthogonal projection of the data onto the loadings (D̂ ̂̂
≠ DVpVpT). Instead a maximum likelihood projection is needed (Equation 7).

The remaining cases in Figure 8 (cases C, E and F) can be addressed with
the ALS algorithm. Case C represents general heteroscedastic independent
errors. Often, the heteroscedasticity observed in chemical data sets is mild and
approximations to case A or case B are adequate. Increasingly, however, data are
obtained that exhibit more dramatic and unsystematic variations in uncertainty.
For example, DNA microarray data are often based on fluorescence ratios and the
uncertainty of a given measurement is highly dependent on spot quality, which
can vary across a microarray (36). In such situations, a companion matrix for D
(m×n) can be created which contains the measurement error variances for each
measurement. Under these conditions, the row error covariance matrix, Σi, will be
a diagonal matrix consisting of the elements from row i of the companion matrix.
Likewise, Ψj, will consist of a diagonal matrix of the variances from column j.
With these definitions, the ALS algorithm described in the previous section can
be applied to obtain the MLPCA solution.
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In the original development of MLPCA, cases E and F were problematic.
At first glance, the application of the ALS algorithm previously described would
seem straightforward. However, the algorithm relies on alternating projections
into the row and column spaces, and equivalent error information has to be
available in each set of projections. For case C (independent errors), the row and
column error covariance matrices carry all of the error information, even though
it is arranged differently. In case E, the row error covariance matrices carry all
of the information, but the information on measurement error correlation is lost
when the data are projected into the row space. Since the column error covariance
matrices are diagonal, they carry only the variance information and cannot convey
the relationships among the measurement channels. Case F is even worse, since
neither dimension can carry all of the error information.

I wrestled with this problem for some time, and it was ultimately Klaas Faber
(Figure 9) who came up with a solution that was so obvious that I was amazed that
I hadn’t seen it. I remember quite distinctly that I was presenting the problem in a
groupmeeting in Seattle whenKlaas casually asked “Why don’t you vectorize it?”.
I immediately saw the logic and rushed back to the lab to test it. All of the situations
in Figure 8 represent special cases of case F, which is the general case where the
errors among all of the measurements are correlated. When errors are correlated
within the rows and within the colums, the only way to describe the relationships
is to unfold the data matrix into a vector and define an error covariance matrix for
the vectorized matrix. Depending on which way the data are unfolded, this leads to
two forms of the full error covariance matrix, designated as Ξ orΩ (bothmn×mn),
analogous to the row and column error covariance matrices. The relationships
among the various error matrices is shown in Figure 10 for a simple 2×3 data
matrix. With these definitions a vectorized form of the ALS algorithm could be
derived and projection equations were obtained for all six cases. These equations
are summarized in Table 1. Although the projection equations are needed for the
ALS algorithm in only three of the cases, they are also needed in cases B-F to
project new data onto the model. In addition to the expanded error covariance
matrices, cases E and F also require the definition of matrices U (mn×n) and V
(mn×m), which are block diagonal forms of Up and Vp.

Figure 9. Bruce Kowalski (left) and Klaas Faber in 2006. (Photo courtesy of
Susana Navea.)
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Figure 10. Pictorial representation of different error matrices used in MLPCA.
(Adapted with permission from reference (89). Copyright 2005 Elsevier.)

Table 1. Projection equations for MLPCA
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The solutions obtained for cases E and F, while theoretically and practically
relevant, can be difficult to implement. Cases where measurement errors are
correlated in both the row and column directions can occur, for example, in the
case of fluorescence excitation-emission matrices (EEMs). However, the practical
realities of trying to obtain reliable estimates for the error covariance matrices
and dealing with the expanded matrices in the ALS algorithm can be challenging.
Nevertheless these challenges have been met.

MLPCA: The Present

MLPCA is not unique in its ability to generate subspace models based on
errors-in-variables principles. I discovered this on my return trip from Seattle
to Halifax when I stopped in Potsdam, New York to meet with Pentti Paatero of
the University of Helsinki, who was visiting with Phil Hopke in the Chemical
Engineering Department at Clarkson University. Pentti is well-known for his
work on positive matrix factorization (PMF) which has been widely applied,
especially in environmental source-receptor modeling problems (37–40). At the
time, the PMF algorithm had been recently expanded to deal with the case of
heteroscedastic measurement errors (40). Although the algorithms used were
different and the error models were not extended as broadly as MLPCA because
of the context of the application, the same optimization criteria were being used
and it has since been demonstrated that the two approaches produce equivalent
results for independent heteroscedastic noise (41, 42). Another technique which
had been developed at this time was total least squares (TLS) (43, 44). At the time
MLPCA was being developed in Seattle, I was aware of TLS, but it wasn’t clear
to me how it related to MLPCA since it was formulated as a regression problem.
It was some years later, in 2003, when I met with Sabine van Huffel at a Gordon
Conference that the parallels between the two methods became apparent. The two
methods, although presented differently and incorporating different optimization
methods, are essentially equivalent in the objective functions optimized and
the error structures employed. A comparison of the two methods was later
reported (45). Following the publication of our initial work, other algorithmic
modifications also appeared. Bro et al described the application of the MILES
algorithm (Maximum likelihood via Iterative Least Squares EStimation) for
MLPCA (46), and Nounou et al generalized the MLPCA concept to Bayesian
PCA (BPCA) (47).

Despite these (and likely more) replications of scientific discovery, an
advantage of MLPCA is that it is formulated in the traditional PCA framework,
allowing it to be readily adapted to a number of chemometric applications that
are based on this type of latent variable representation. In this section, some
of the developments around MLPCA since 1996 are summarized. While the
discussion is mainly focused on applications relevant to chemistry, the subject
of maximum likelihood subspace modeling is applicable to virtually all areas of
science. A survey of citations of the original MLPCA paper (32) reveals interest
and relevance from a wide variety of fields, as shown in Figure 11. While many
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of these will no doubt be incidental citations, the figure indicates the relevance of
the problem.

Figure 11. Statistical summary of research areas of articles citing the original
work on MLPCA (1997-2015, Web of ScienceTM results).

Multivariate Calibration and Data Preprocessing

Multivariate calibration was perhaps the most obvious application of
MLPCA and consequently was the first that was explored. This resulted in two
methods, maximum likelihood principal components regression (MLPCR) and
maximum likelihood latent root regression (MLLRR) (48). The former was a
straightforward extension of principal components regression (PCR) in which the
subspace was determined by MLPCA instead of PCA and orthogonal projections
were replaced by ML projections. The MLLRR implementation, however, arose
from a lunchtime conversation with Bruce Kowalski. As we were discussing ways
to incorporate the measurement errors in the reference values, Bruce described
the technique of latent root regression (LRR), a technique unfamiliar to me, in
which the matrix of predictors, X, is augmented with the predictand vector, y,
and common subspace is found for both. A weakness of LRR is that is that the
common subspace is sensitive to the scaling of the variables, so this seemed a
natural fit for ML methods. This is yet another example of how Bruce’s casual
insights revealed a broad and comprehensive understanding of the field.

Both of these methods represented a significant departure from traditional
regression methods in that they were error-driven. Unlike most chemometric
methods that sought to derive a single universal regression vector, such a vector
could only be obtained for these methods if all future samples could be assumed
to have a common error structure. Otherwise, the error covariance matrix for the
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unknown sample had to first be used to project it into the regression subspace
before the prediction equation could be applied to the scores. In this way, the
prediction was designed to be optimal for the measurement error characteristics
of a particular sample.

Since the introduction of these methods, there have been a variety of
applications, investigations and improvements of the techniques (49–56), but they
have not been widely adopted for problems in multivariate calibration. There are a
number of reasons likely contributing to this. One of these is the well-established
dominance of methods such as partial least squares (PLS) regression, PCR,
classical least squares (CLS) regression, and ridge regression (RR), which have
long-standing protocols and application histories. This can make it difficult for
many new methods to establish a foothold, especially if they involve additional
levels of complexity, unless dramatic improvements are demonstrated. Another
important restriction on the use of MLmethods is the requirement of measurement
error information in the form of error covariance matrices. Since this information
is not routinely available and cannot generally be obtained retroactively, it is
difficult to assess the full extent of improvements that can be achieved across
various applications. However, methods have been proposed to estimate error
structures in an iterative fashion and these warrant further attention since they
have the potential to greatly expand applications (55, 56).

It is also important to recognize that, in spite of the appeal of optimal
subspace estimation, ML calibration methods are not necessarily well-suited to
all problems, and improvements in prediction ability may be marginal. These
improvements arise from two main sources: increased sensitivity through better
subspace estimation and reduced errors through ML projections. It is known
that maximum sensitivity is achieved when the subspace of the latent variables
is aligned with the subspace of the pure component profiles (e.g. spectra) (57,
58), but such alignment is not required for a functional calibration model. Near
optimal sensitivity may be obtained even if the subspace is suboptimal. A more
important factor is likely to be the noise reduction that occurs through the ML
projection (as opposed to orthogonal projection) of new samples into the subspace.
Since this projection makes optimal use of the measurements with the smallest
errors, substantial improvements can be achieved, but only if there is a significant
deviation from iid normal errors. Another condition that needs to be met to
realize these theoretical improvements is a subspace with a well-defined rank.
Unlike conventional calibration methods that primarily seek variable compression
without the strict imposition of a subspace model, the optimality of ML methods
is predicated on the assumption of a model with a known rank. While this is
reasonable in the analysis of pre-formulated or well-defined mixtures, it is a
difficult presumption to make in the case of complex mixtures such petroleum
products or food samples, so the advantages of ML methods are less clear.

An important contribution of calibration methods based on MLPCA to
multivariate calibration is an improved understanding of the role of data
preprocessing. In the context of ML estimation, many methods can be viewed
as strategies to modify the error structure of the data to be closer to the iid
normal characteristics assumed by conventional methods such as PCR. These
strategies range from simple scaling of the data to more complex operations such
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as derivative filtering (35). A generalized approach to whitening of the data
matrix was proposed by Martens et al (59). This reduces to variants of MLPCA
in certain instances, although it is limited to particular types of error covariance
structures. It is also significant that simple calculations allow the prediction of
the post-transformation error covariance matrix after linear operations such as
digital filtering or the application of wavelet transforms (33, 60, 61). This enables
the effect of preprocessing methods on the error structure to be evaluated and
simplifies the application of MLPCA in alternate domains. Finally, because of
its noise filtering capabilities, Hoefsloot et al have proposed MLPCA as part of
a general form of data preprocessing referred to as maximum likelihood scaling
(MALS) (62).

Exploratory Data Analysis

The principal goal in the application of PCA to exploratory data analysis is
the visualization of the relationships among objects or variables in a subspace
of lower dimensionality, with the intent of assessing correlations and clustering.
PCA is often well-suited to this objective when the between-class variance is
larger than the within-class variance since it is a variance-based method. However,
especially when these conditions are not met, other methods may provide superior
visualization. Methods based on distance metrics, such as hierarchical cluster
analysis (HCA), or those based on other measures of projection utility, such as
projection pursuit (PP) or independent component analysis (ICA), are also used
for this purpose. A key aspect of such exploratory visualization methods is that
there is no well-defined objective function for optimal projection other than its
utility to the analyst.

Unlike PCA, which is variance-based, MLPCA is model-based, requiring
bilinear data with a defined pseudorank and prior knowledge of the error structure.
These conditions may be uncertain in a purely exploratory study, and therefore
the application of MLPCA for such purposes may not be ideal. Moreover,
the application of an MLPCA model with an appropriate dimensionality for
visualization (i.e. two or three) which is less than the pseudorank of the data can
result in erratic projections of the measurements into the subspace and confound
visualization efforts. When the pseudorank of the data and the error structure are
known, the application of MLPCA for visualization falls into two categories. In
the first case, the visualization dimension matches the pseudorank and MLPCA
can be an effective visualization tool because it ensures optimal projection of
the data into the subspace. In the second case, when the pseudorank of the data
is greater than the visualization dimension, MLPCA essentially acts as a noise
filtering tool prior to the application of PCA (which is applied to the projected
data in the final step of the MLPCA algorithm), and in that way can lead to a
more useful visualization of the data. The complex issues associated with the
application of exploratory analysis to noisy data have been addressed in the
literature (63), and this work introduced new definitions of rank associated with
data visualization.

While MLPCA itself may not be ideally suited to early stage exploratory
data analysis, where issues of rank and error structure may be unresolved, the
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theoretical developments associated with measurement errors and projections of
the data into the subspace have relevance. Given a defined projection method
such as PCA, it is straightforward to define how the measurement error covariance
matrix will project into the subspace (33, 63). This provides an estimate of
the uncertainties in the projected points and is particularly useful in cases of
measurement errors with a high level of heteroscedasticity. In these situations, a
few measurements with large errors can confound the visual interpretation when
the corresponding objects are projected into the wrong regions of the subspace.
The extent to which this occurs depends on the orientation of the subspace
relative to the original variables and the nature of the projection, but this can
be quantified through propagation of error and used by the analyst for a more
accurate assessment of the results. One method proposed to do this is has been
referred to as a partial transparency projection (PTP) in which the transparency
of a projected object is related to its spatial uncertainty (63). This means that the
visual interpretation is biased towards those objects that are projected with the
greatest reliability. This is illustrated in Figure 12, which shows the projected
objects (in this case genes from a microarray experiment) before and after the
application of the PTP.

Figure 12. Example of partial transparency transform (PTP) applied to
projections of microarray data with heteroscedastic noise. (Adapted with
permission from reference (63). Copyright 2012 John Wiley & Sons.)

Multivariate Curve Resolution and Multiway Analysis

MCR represents perhaps the most natural application of MLPCA to problems
of multivariate analysis in chemistry. The criterion of a well-defined pseudorank
follows directly from the bilinear model imposed for MCR and, unlike calibration
or exploratory analysis, accurate subspace estimation is of paramount importance
in MCR since this defines the space of the pure component profiles. In spite of
this, it was almost ten years before algorithms were developed to unite the two
(64). There were a number of reasons for this delay that included algorithmic
development, access to suitably characterized test data, and the absence of a
pressing need. Although heteroscedastic errors were a concern in applications of
receptor modeling, these cases were handled by Paatero’s PMF software (40).

The need to apply ML principles to curve resolution arose fortuitously when
I spent four months in the Biology Department at the University of New Mexico,
where I was involved in a project studying longitudinal gene expression data for
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yeast exiting stationary phase (65). These time course experiments employed
spotted dual-color microarray data, where measurements of expression data
were based on two-channel fluorescence ratios that were highly heteroscedastic
due to variations in spot quality (36). We were interested in applying MCR
to the microarray data, something which hadn’t been done before, but the
heteroscedasticity necessitated a new approach.

The extension of MLPCA strategies to MCR is quite natural since it simply
involves a redefinition of the basis vectors employed (64). There is no prerequisite
within the MLPCA framework that requires that the vectors defining the subspace
be orthogonal. This is done simply for convenience so that the basis vectors are
uniquely defined and consistent with PCA, but the projection equations remain the
same whether or not the vectors are orthogonal. Moreover, the ALS algorithm that
is used in MLPCA is very similar to that used in the most popular implementation
of MCR (MCR-ALS), so the coupling is natural. In MCR, the relevant model can
be represented as:

Here, D (m×n) is the data matrix consisting ofm response profiles at n channels, C
(m×p) is the contribution matrix (typically concentrations) for p components, and
P (p×n) is the matrix containing the pure component profiles (typically spectra).
For MCR-ALS, the alternating least squares equations are:

with suitable constraints applied on each cycle. For the modified method, the same
equations are applied, but the original data matrix is replaced with the maximum
likelihood projections before each solution is obtained. Assuming independent,
heteroscedastic errors, these are:

with the notation and definitions as given earlier. Alternative projection equations
can be used for different error structures, making the implementation completely
general. The new method is referred to as MCR-WALS for “weighted alternating
least squares”. Although the name “maximum likelihood MCR” was proposed, it
was abandoned because the name might imply some statistical advantage of the
solution that removed the rotational ambiguity, which is not the case.

An alternative implementation of the MCR-WALS approach is to carry out
MLPCA on the D matrix first and then apply the standard MCR-ALS to the
projected data. This method, referred to as MLPCA-MCR-ALS, has been shown
to produce results that are essentially the same, but has the distinct advantage
the MLPCA and MCR algorithms can be applied separately without the need
to integrate them (66, 67). It has also been shown that MCR-WALS produces
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the same results as PMF when applied to receptor modeling data (41, 42), and
PMF has likewise been applied to other types of data (39). This equivalence of
final results in spite of some algorithmic differences is not surprising given that
the same objective functions are optimized. Although most of the applications
of MCR-WALS since the original description of the algorithm (41, 42, 66–75)
have been to Case C error structures (heteroscedastic, independent), it can in
principle be applied to any of the noise structures in Figure 8, which may present
an advantage over PMF.

The maximum likelihood treatment of measurement errors has also been
extended to multiway methods by its inclusion in parallel factor analysis
(PARAFAC) models. This extension is natural given that the ALS algorithm is
already used for PARAFAC, but is complicated by the introduction of additional
orders, which expand the possible error covariance structures given in Figure 8
and necessitate increased memory usage to deal with error covariance matrices
of the unfolded data. In 1997, Paatero presented an efficient modification of
the PMF method for three-way data, referred to as PMF3 (76), although this
was limited to independent heteroscedastic errors. In 2002, Bro et al applied
the MILES technique to PARAFAC models in addition to MLPCA (46). Two
examples were used; one was a small scale simulated data set employing a fixed
error correlation structure along one order, and the other imposed an iid error
structure to remove artefacts from fluorescence excitation-emission matrices
(EEMs). These special cases were generalized to broader error covariance
structures by Vega-Montoto in 2003 with the introduction of MLPARAFAC (77).
This original work was limited to relatively small scale simulations to validate
the algorithms, but the theoretical aspects were later expanded (78), and the
experimental application to fluorescence EEMs in carefully designed experiments
was used to compare methods and examine the complexities of evaluating error
covariance matrices for three-way data (79). Practical difficulties have so far
limited applications of MLPARAFAC, but one demonstrated application has been
to the direct exponential curve resolution algorithm (DECRA) (80, 81). Because
this method converts bilinear data into trilinear data by a shifting procedure, a
predictable error correlation structure is introduced, and this can be addressed
through MLPARAFAC to achieve improved results (82).

Modeling of Measurement Noise

One of the biggest barriers to the implementation of theMLmethods described
in this work is a lack of information about the measurement error structure for
most data sets. As noted earlier, the error covariance matrix can be estimated
from a series of replicates, but these are often unavailable. Even when replication
is carried out with appropriate design considerations, however, the variance and
covariance estimates are subject to high variability unless the number of samples
is quite large. Theoretical modeling of errors is an alternative in certain cases,
for example when counting statistics dominate the uncertainty, but generally the
contributions of multiple sources to the overall error makes this impossible. A
third option which shows promise is a compromise between these two approaches,
where experimental data is used to develop an empirical model that describes the
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error covariance matrix for a given system in a manner which is consistent with
known measurement characteristics.

The importance of measurement noise in analytical measurements has
been recognized from the beginning and continues today, but most studies have
focused on noise variance estimation and/or frequency characteristics in the
context of univariate methods, with little attention paid to correlation properties
or the implications for multivariate analysis (83–88). Since the development
of multivariate methods that make use of measurement error information, the
need for a more complete characterization of errors has become more widely
appreciated among chemometricians and strategies to characterize measurement
errors in the context of multivariate analysis have slowly begun to appear (36,
89–98). Of particular interest are those methods that attempt to obtain empirical
models of the error covariance matrix for various systems (89–91). These
have several advantages that include improved quality of variance/covariance
estimates, general applicability in the absence of replicates, possible extension
to similar systems, and enhanced insights into the nature and origin of errors.
Presently, however, the scope of understanding of measurement errors in most
systems has fallen behind the ability to incorporate this information.

MLPCA: The Future

Having explored the evolution and current state of the art of MLPCA-related
methods, it naturally remains to speculate on the future trajectory of these
techniques. This is a dangerous undertaking, best left to fortune tellers and
economists, but some general comments can be made regarding areas in need of
further research.

The first area of need is the rather practical aspect of algorithmic development
and dissemination. To my knowledge, there are no commercial software packages
that supportMLPCA-related software, although some code is freely available from
individual researchers. To be fair, impediments to this incorporation include the
implementation complexity associated with the different variants of the code for
different error structures, the potentially demandingmemory requirements, and the
slow convergence of some of the ALS procedures. These are all issues that can
be addressed through appropriate engineering of the software, however. There is
not a large demand for the software at present, in part because it is not readily
available, but also because many routine applications continue to be served well
by traditional multivariate methods, especially where error strucures do not deviate
appreciably from iid assumptions or can be treated to approximate this assumption.
However, to extend the reach of these tools into ever more challenging domains,
more refined methods will be needed to separate the information from the noise.

Research also needs to be pursued to develop better diagnostics associated
withMLPCA, especially with regard to pseudorank estimation. Standard practices
for the estimation of pseudorank using PCA arewell-established and ingrained into
most practitioners. While not foolproof, methods such as scree plots, F-tests and
residual analysis, among others, offer reasonable arguments for rank estimation in
cases where the iid approximation is valid. These samemethods cannot be reliably
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employed for heteroscedastic and correlated error structures. In the ideal case, the
MLPCA objective function should follow a χ2 distribution, but this is no longer
valid when estimates of the covariance matrix are obtained from replicate data
or empirical equations and may therefore exhibit variable levels of uncertainty or
bias. Currently, there is no reliable statistic that has been proposed to estimate
pseudorank for MLPCA. Even the definition of pseudorank is unclear in certain
cases. For example, spectra from three-component mixtures that are characterized
by iid noise with a random baseline offset could be considered as a four-component
system with iid errors (baseline offset as one component) or as a three-component
system with a correlated noise component. These basic statistical issues remain to
be addressed.

Finally, to fully assess the implications of MLPCA-based methods across
all potential domains of application requires both an understanding of the error
structures and how those errors impact both the traditional and ML methods.
In the case of multivariate calibration, for example, estimation equations for
prediction intervals for traditional methods based on iid assumptions have been
available for some time (99), but there is a need to extend these to non-iid cases
and new calibration methods so that the implications of new approaches can be
evaluated theoretically as well as empirically. Before this can be done, a better
understanding of relevant error structures needs to be obtained. Although this
seems like a daunting task, it is becoming more apparent that the measurement
errors associated with certain types of analytical methods follow particular
patterns of behavior that can be effectively modeled with a limited number of
parameters. A number of well-designed investigations into commonly employed
instrumental systems is likely highlight this commonality and provide error
models that can be used to fully explore the limits of multivariate methods.
It may even be possible to generate these models in the absence of replicated
data by imposing iterative (55, 56) or localized (96) estimation procedures.
Ultimately, incorporating the constraints imposed by these models, it may be
possible to approach a true ML method, where the measurement error parameters
are extracted along with the model parameters.

No one who engaged with Bruce Kowalski for any significant period of
time could help but be impacted by his broad philosophical views of science
and research, often expressed as maxims, that he conveyed openly and that
pervaded the attitudes of those who worked with him. In concluding this
work, I will share three of these that have remained with me in the context of
the development of MLPCA. One of Bruce’s core principles was simplicity
(“keep it simple, stupid”- U.S. Navy) and at the root of MLPCA is the goal of
removing the confounding ambiguities associated with data preprocessing and
method selection for multivariate methods in analytical chemistry. Despite the
apparent mathematical complexities, the guiding philosophy behind MLPCA
was simply the optimal integration of measurement error information into data
analysis. Bruce also believed that chemometrics was the foundation of analytical
chemistry, providing the theoretical engine behind a field often regarded as lacking
fundamental unifying principles. I got the sense that, of all of his publications,
he was most proud of the one entitled “Theory of Analytical Chemistry” since
it embodied the core ideas of chemical measurement in a coherent way (57).
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Certainly this was one of the most influential publications in my career, and I like
to think that the work on MLPCA fits into this scaffold nicely, since it establishes
a general framework for the incorporation of errors, which are an inherent part
of any measurement. Finally, as a corollary to this view, Bruce believed that it is
the role of chemometrics to guide the design of new analytical instruments, rather
than the other way around (“theory guides, experiment decides”- I.M. Kolthoff).
From that perspective, I like to hope that some of the principles embodied in the
work that we have done will go at least a small way to expanding the capabilities
of analytical measurements in the future.
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Chapter 4

Inferring Dioxin Sources in Sediments from a
Coastal Harbor Using Multivariate Analysis

L. Scott Ramos,*,1 Jon Nuwer,2 and Gregory L. Glass3

1Infometrix, 11807 N Creek Parkway S, Ste B-111, Bothell,
Washington 98011

2NewFields, 115 2nd Ave N, Suite 100, Edmonds, Washington 98020
3Gregory Glass Consulting, Seattle, Washington 98115

*E-mail: scott_ramos@infometrix.com

The harbor of Port Angeles in western Washington has been
shown to have dioxin concentrations in excess of background
levels. A multivariate study was undertaken to understand
the nature of contamination. Mixture analysis methods
indicated several characteristic patterns that could be associated
with identifiable source materials. Principal among these
were patterns indicative of burning of salt-laden wood and
of pentachlorophenol-related profiles. Spatial interpolation
allowed identification of potential source locations upland from
the harbor.

Introduction

Harbors and waterways have long histories of industrial contamination.
Among environmental pollutants of significant concern are the classes of
persistent organic chemicals known as polychlorinated dibenzo-p-dioxins and
dibenzofurans, commonly referred to as dioxins and furans, respectively. Dioxins
and furans have a common origin and enter the environment as by-products of
chemical manufacturing and from combustion of materials with chlorine present.
The concern derives from the potentially significant toxicity to wildlife and
humans of certain isomers of these chemicals and from their persistence in the
ecosystem.

The coastal harbor of Port Angeles, WA, has been identified by the
Washington State Department of Ecology (DOE) as a priority cleanup and

© 2015 American Chemical Society
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restoration site. Recent investigations have shown dioxin and furan congener toxic
equivalency (TEQ) concentrations of surface sediments in excess of background
levels across the entire harbor. DOE initiated a study of the occurrence of dioxins
and furans in this harbor to understand the nature of the contamination.

Background

Dioxins fall into two main classes of compounds: polychlorinated
dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), the
group of both classes generally referred to as ‘Dioxins’. The structures shown in
Figure 1 describe the possible isomers of the two classes; individual isomers are
generally referred to as dioxin congeners.

Figure 1. Structures of polychlorinated dibenzo-p-dioxins and furans

Dioxins are formed as by-products of several chemical processes (1),
including during the chlorine bleaching process at pulp and paper mills. They
can occur as contaminants in the manufacture of certain organic chemicals,
for example, in the herbicide 2,4,5-T (Silvex) and in Agent Orange. Dioxins
are released into the air in emissions from municipal solid waste and industrial
incinerators, from smelting and refining operations, as well as from residential,
backyard barrel burning. A historical source of dioxins derives from leaded fuel
emissions.

The EPA has established methodology (2) for the analysis of dioxins using
isotope dilution, high resolution capillary column gas chromatography coupled
to high resolution mass spectrometry, specifically for the determination of tetra-
through octa-chloro dioxins and furans.

Of the 210 possible chlorinations on the dioxin and furan ring systems
(dioxins: 75; furans: 135), 17 congeners share the base chlorine substitution
pattern of the most toxic compound, 2,3,7,8-tetrachlorodibenzo-p-dioxin
(2,3,7,8-TCDD), as well as the same mode of toxicity.

Toxic equivalence factors (TEF; see Table 1) have been derived for these 17
congeners in which the TEF (3) for 2,3,7,8-TCDD is defined as 1. The TEQ for a
sample is defined as the sum of the TEF-adjusted concentration values. Sediment
TEQ values for dioxins/furans are generally used by regulatory agencies for
decision making purposes, including establishment of sediment cleanup criteria
and assessment of both human health and ecological risks.
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Table 1. Toxic equivalence factors of PCDD and PCDF congeners (3)

Congener Abbreviation TEF

2,3,7,8-tetrachlorodibenzo-p-dioxin 2,3,7,8-TCDD 1

1,2,3,7,8-pentachlorodibenzo- p -dioxin 1,2,3,7,8-PECDD 1

1,2,3,4,7,8-hexachlorodibenzo- p -dioxin 1,2,3,4,7,8-HXCDD 0.1

1,2,3,6,7,8-hexachlorodibenzo- p -dioxin 1,2,3,6,7,8-HXCDD 0.1

1,2,3,7,8,9-hexachlorodibenzo- p -dioxin 1,2,3,7,8,9-HXCDD 0.1

1,2,3,4,6,7,8-heptachlorodibenzo- p -dioxin 1,2,3,4,6,7,8-HPCDD 0.01

Octachlorodibenzo- p -dioxin OCDD 0.0003

2,3,7,8-tetrachlorodibenzofuran 2,3,7,8-TCDF 0.1

1,2,3,7,8-pentachlorodibenzofuran 1,2,3,7,8-PECDF 0.03

2,3,4,7,8-pentachlorodibenzofuran 2,3,4,7,8-PECDF 0.3

1,2,3,4,7,8-hexachlorodibenzofuran 1,2,3,4,7,8-HXCDF 0.1

1,2,3,6,7,8-hexachlorodibenzofuran 1,2,3,6,7,8-HXCDF 0.1

1,2,3,7,8,9-hexachlorodibenzofuran 1,2,3,7,8,9-HXCDF 0.1

2,3,4,6,7,8-hexachlorodibenzofuran 2,3,4,6,7,8-HXCDF 0.1

1,2,3,4,6,7,8-heptachlorodibenzofuran 1,2,3,4,6,7,8-HPCDF 0.01

1,2,3,4,7,8,9-heptachlorodibenzofuran 1,2,3,4,7,8,9-HPCDF 0.01

Octachlorodibenzofuran OCDF 0.0003

Within Port Angeles harbor and surrounding areas, several potential sources
of dioxins have been identified. These include paper mills under a series of
ownership dating back more than 60 years, combined sewer overflows (CSO)
within the city of Port Angeles, hog fuel boilers operated by Rayonier and other
mills, as well as deepwater outfalls from the city wastewater treatment facility
and the Rayonier Mill.

Earlier attempts at characterizing the source and distribution of dioxins
in Port Angeles harbor have largely focused on evaluation of the TEQ values
for surface and subsurface sediment samples (4). A single measure cannot
differentiate disparate sources, therefore, a multivariate approach was considered
in which all 17 dioxin and furan congeners would be evaluated together. Such
an approach was previously applied to the analysis of dioxins in soils in the Port
Angeles vicinity (5).

Among the multivariate tools used in the environmental field, factor-based
and mixture analysis methods are among the most common. Factor and
principal component analysis (PCA) are exploratory methods (6, 7) that seek
to find and understand relationships among samples, locate potential outliers or
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aberrant samples, and describe differences and similarities among measurements.
Particularly suited to studies of source apportionment, mixture analysis algorithms
(8) such as target factor analysis, polytopic vector analysis (PVA) and multivariate
curve resolution-alternating least squares (MCR-ALS) can reveal underlying
patterns of chemical constituents and then assign contributions of these patterns
to sample mixtures.

Multivariate statistics have been used frequently to study dioxins and furans
and other types of persistent chemical contamination in the environment. For
example, PCA was used in a study of air and soil pollution from municipal solid
waste incineration in a large Taiwan city to characterize trends in dioxin patterns
across the region (9). Differentiation of dioxin sources among residential and
industrial locations was facilitated in another study in Taiwan via the use of PCA
(10).

The distribution of PCDD/F profiles in soils impacted by waste incineration
in Madrid was compared using PCA (11). Studies in British Columbia combined
dioxin congeners with PCBs, then applied PCA to provide insight into source
distributions near a pulp mill (12). PCA was also used in Korea to demonstrate
a progression of the dioxin patterns from that characteristic of an incinerator to
that of less polluted sites (13) and to evaluate the influence of a municipal waste
facility on the contamination of both air and soil in the vicinity (14).

A study of Baltic Sea surface sediments used PCA to help identify PCDD/
F patterns and associate them with known patterns originating from industrial
processes and atmospheric deposition (15). Comparisons of dioxin patterns in
a North Sea port to those emanating from combustion sources was facilitated by
cluster analysis and neural networks (16). PCA was also used in a study in coastal
British Columbia to examine trends in PCDD/F contamination in sediments and
crab (17).

Although PCA and associated techniques can help identify likely patterns
of dioxins present in a suite of samples, mixture analysis algorithms can, in
addition, quantify the contributions of each proposed pattern to the composition
of the samples. For example, assessments of dioxins contamination in abandoned
military sites in northern Canada were done using PCA and PVA (18). In a study
of sediment cores in Newark Bay, PVA was used to propose sources of dioxins as
originating from combustion, sewage sludge and sources associated with PCBs
(19). Another study in Tokyo Bay used positive matrix factorization (PMF) to
demonstrate the presence of pentachlorophenol in ocean sediments (20).

In this study, MCR-ALS was applied to dioxin patterns of a large collection of
sediment samples obtained in Port Angeles harbor and considered three aspects:

• Identify distinct PCDD/F congener source signatures present in harbor
sediments;

• Determine relative contributions of identified PCDD/F sources to harbor-
wide contamination; and

• Use spatial distributions of sediment PCDD/F sources to identify
potential upland point source locations.
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Methods
Data Sources

Study Data

Port Angeles Harbor sediment dioxin/furan congener data from several
individual data sets were combined for use in the multivariate analysis, including:

• Port Angeles Harbor Sediment Characterization Study (21)
• National Park Service Sediment Sampling for Nippon Paper Industries

Outfall 002 Replacement (22)
• Nippon Paper Industries USA Pulp and Paper Mill Environmental

Baseline Investigation (23)
• Remedial Investigation for the Marine Environment Near the Former

Rayonier Mill Site (24)
• Phase 2 Addendum Remedial Investigation for the Marine Environment

Near the Former Rayonier Mill Site (25)
• Summary of the Log Pond Survey Scoping Effort for the Remedial

Investigation (26)

Comparison Data

Several past studies of dioxins in environmental and industrial settings were
obtained, and the patterns of dioxins ascribed to different sources were extracted
and combined into a comparison database. These studies included:

• EPA Inventory of Sources and Environmental Releases (27)
• Studies on Canadian hog fuel boilers (28, 29)
• Effluent samples from Rayonier (24)
• Stack samples from Rayonier (30)
• EPA mill studies (31)
• New Zealand soil studies (32)
• Denver Front Range residential soils (33)
• Chimney soot from home heating systems (34)
• PCDDs and PCDFs in PCB Aroclors (35)
• Study of treated utility poles (36)
• Polychlorophenols in industrial preparations (37)

Multivariate Methods

In multivariate analysis, we assume that the patterns associated with each
source input add linearly to form the observed pattern. In mathematical terms, a
matrix of data (whose dimension is number of samples down the rows by number
of measurements across the columns) derived from a single material can be built
by multiplying the vector (or list) containing the amounts of this material in
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the different samples by the vector that represents the pattern of measurements
for that material. If there are two materials, then the data would be formed
by multiplying a table of compositions (of size number of samples by the two
columns of compositions of the two materials) by the table containing the two
patterns (one row of numbers for each material). Data originating from more than
two sources would come from similarly larger composition and profile tables.

PCA is a multivariate projection technique which decomposes such a matrix
(X) into the product of two underlying matrices—the scores matrix T and the
transpose of the loadings matrix L:

The PCAdecomposition orders the scores and loadings so that each successive
combination explains a decreasing amount of the variance in the data. Thus, later
columns of the T and L matrices contain mostly noise. If only the first k columns
of the scores and loadings matrices are considered relevant and retained, then

where is an estimate of X, and the dimensionality of the data matrix is said to
have been reduced. The columns of L are the loadings, or principal components,
the new factors which are linear combinations of the original variables; they
are also the eigenvectors of XTX, where T is the transpose operator. The first
loading, the m elements of the first column of L, indicates how much each original
variable contributes to the first principal component, PC1. The scores matrix T
is the projection of the sample vector onto the axes defined by the eigenvectors.
Each sample has a coordinate on each new axis; the columns of T contain these
coordinates.

Although PCAmay indicate the presence of multiple relevant loading vectors,
they are abstract vectors and do not in general correlate to real patterns. A mixture
analysis algorithm, on the other hand, attempts to discover the true underlying
patterns and the contributions of these patterns to the samples in the data matrix.
For example, in the MCR-ALS algorithm (38), the process begins by estimating
the source patterns S, and, using matrix algebra, to estimate the compositions C.

To assure that the processing converges to a meaningful solution, after each
estimation step, constraints are applied to the newly estimated data. There are
many forms the constraints can take; the most common are to apply non-negativity
to both matrices: we assume that the intensities in the measurements cannot be
less than zero and we also assume that the proportions of the patterns that make
up the compositions must also be zero or positive. By applying these constraints,
the iterations through the steps of estimating first the patterns matrix and then the
compositions matrix will eventually converge to a solution where the patterns and
compositions should allow meaningful interpretation of the data.

Most of the various mixture analysis algorithms produce similar results (8).
For this study, the MCR-ALS algorithm was used.
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Results
The distribution of dioxin/furan TEQ in surface sediments of the harbor

suggests two main upland source regions: industrial properties of the western
harbor and the former Rayonier Mill, located along the southern shoreline at
the mouth of the harbor. The highest TEQs are found along the western harbor
shoreline, with concentrations decreasing with distance into the central and outer
harbor (Figure 2). TEQs in the surface sediment samples collected within the
western harbor lagoon were among the highest observed. Upland facilities along
the western harbor shoreline potentially responsible for this dioxin include a
sawmill and two pulp and paper mills.

Figure 2. Total Dioxin TEQ for Port Angeles Sediments

Dioxin/furan TEQs in the former Rayonier Mill log pond and dock area
are greater than those of the central and outer harbor, suggesting the former
mill property as a potential dioxin source (Figure 2). Unlike the well-protected
western harbor, the mouth of the harbor where the former Rayonier Mill resides
is subjected to waves and currents that have the potential to cause resuspension
and dispersion of sediments.

Despite the utility of dioxin TEQ spatial patterns for identifying potential
upland source regions, the footprint of individual sources cannot be deciphered
without further understanding of unique source profiles. Multivariate analyses
provide these means.

Data Screening

Dioxin levels in the collected samples varied considerably; in some samples
certain dioxin congeners were not detected (the non-detect level varies with
congener). Before any processing was done, data were censored to exclude those

71

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

4

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 

http://pubsdc3.acs.org/action/showImage?doi=10.1021/bk-2015-1199.ch004&iName=master.img-005.jpg&w=275&h=192


samples for which there were too many non-detect congener measurements.
Excluding samples with non-detect values should not be done lightly as this can
create an upward bias in statistics based on the retained data (39). On the other
hand, substituting a value for the non-detect value can also lead to biases, and
this fabrication of data may lead to misleading conclusions about structure in the
data. For this study, a middle ground was sought: exclude samples for which a
large number of non-detect values were present (see below) while for samples
that were included, substitute the non-detect values with half the detection limit.

Of the 279 sediment samples for which 17 congeners were measured, there
were a total of 597 non-detect values, approximately 13%. However, these
non-detect values were not uniformly distributed; for example, the two congeners
for which non-detect values were the highest included 1,2,3,7,8,9-HxCDF (127
samples; 46%) and 1,2,3,4,7,8,9-HpCDF (72 samples; 26%). Nine congeners
exceeded 10% non-detect values. The distribution of non-detect values is shown
in Figure 3.

Figure 3. Distribution of non-detect values across congeners before (blue) and
after (red) exclusions

The frequency of non-detect values within samples is skewed in an expected
way, as shown in Figure 4. The frequency curve flattens after about 4 non-detect
values. Using this as a threshold, that is, excluding samples for which more than
4 congeners were non-detect values, 234 samples (84%) were retained. Of the 45
samples excluded in this manner, none had a TEQ over 8 and most were below 2
ppt, compared to the range of values in the data set of 0 to 119 ppt.
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Figure 4. Frequency of non-detect values in study samples

After excluding samples, the distribution of non-detect values in the remaining
included samples is more uniform. The highest number of remaining non-detect
values was 45 (19%), as shown in Figure 3.

Data Pretreatments

Preliminary evaluation of the appropriateness of the data was conducted by
examining line plots and by principal component analysis (PCA). For example, all
bulk congener data can be shown overlaid in a line plot (Figure 5), without any
scaling of the response values.

Plotted in this way, it is clear that the overwhelming contribution to overall
intensity comes from the octa-chloro dioxin congener, while the lesser-chlorinated
dioxins and furans contribute relatively little intensity. Thus, before proceeding
with any analyses, it is important to scale the different variables such that they
are all roughly in the same order of magnitude. There are different approaches
to accomplish variable scaling. For this study, two approaches were applied to
investigate whether conclusions would differ: scaling by the TEF and scaling by
the standard deviation (variance scaling).

One method frequently used in studies of dioxins is to scale by a toxic
equivalency factor (40–42), based on toxicities relative to 2,3,7,8-TCDD. An
advantage of TEF scaling not shared by other scaling methods is that the result is
not dependent on the particular data set because scaling is done for each sample
independently.

In Figure 6, the data from Figure 5 have been scaled by the TEFs. There
remains variation in magnitude for the different congeners but patterns are
discernible and the intensities are more directly correlated to risk assessment.
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Figure 5. Bulk congener profiles of all study samples, showing chromatographic
peak intensities

Figure 6. TEF-scaled profiles of all study samples
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In Figure 7, each variable was scaled by the standard deviation across the set
of samples. This form of scaling results in a variance of 1 for each variable but
runs the risk of inflating noisy variables to the same importance of other variables.

Figure 7. Variance-scaled profiles of study samples

We chose to use TEF-scaling as the method of pretreatment for the following
reasons:

• Scaling factors (congener-specific) are independent of which samples are
in the data set, whereas variance scaling factors are a function of the
specific samples included in the calculation and would therefore change
if different samples were treated.

• Because TEF scaling factors can be applied universally to dioxin/furan
congener data, analysis results can be compared to profile libraries scaled
by the same means. Variance scaling factors are specific to the data
set being scaled, thus the resulting congener profiles cannot be directly
compared to profiles outside of the data set, such as a comparison library.

• Chemometric analysis of TEF-scaled data identifies dioxin/furan profiles
that contribute to a significant portion of sample TEQ. This is useful
for decision making, as human health risk, ecological risk, and cleanup
criteria are all based on TEQ.

It is customary to further normalize the data to account for different sample
sizes thereby minimizing variation in absolute concentration. Although various
methods of normalization are used in the multivariate field, area % normalization
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is typical for chromatography data and was used in this study. Figure 8 shows the
area % normalized, TEF-scaled data. All subsequent multivariate analyses were
performed on these data.

Figure 8. Normalized TEF-scaled profiles

PCA Analysis of Dioxins/Furans

After censoring and pre-treating, data were processed by PCA. Cross-
validation (43) was used during the processing. The resulting prediction residual
error sum of squares as a function of the number of factors (PRESS; see Figure 9)
can be used to help understand how many underlying components may be present
in the data set and indicated 4-6 factors to be optimal.

The PCA scores of the normalized, TEF-scaled data are shown in Figure 10. In
this view of scores in the first 3 factor directions, which represents more than 97%
of the information in this data set, samples are distributed in multiple directions.
Each direction indicates a likely underlying source material; to get at what these
source profiles might be, we turned to the MCR-ALS mixture analysis algorithm.
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Figure 9. PRESS plot from PCA on normalized, TEF-scaled data

Figure 10. PCA scores of normalized, TEF-scaled data
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Mixture Analysis of Dioxins/Furans

Mixture analysis was run using the MCR-ALS algorithm, in which up to 8
possible sources were considered. Constraints included non-negativity of both
the source contributions and profiles. Based on the non-random structure in the
first six PCA factors and on a quality of fit diagnostic for the ALS results, it was
decided that 6 sources would be a good estimate. The estimated dioxin profiles for
6 sources are plotted together in Figure 11.

Figure 11. Source profiles following mixture analysis; 6 source solution
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The patterns of dioxins in these source profiles are estimates of the patterns of
materials that were deposited in the harbor sediments. However, in such a mixed
environment, it is likely that every sample location has some contribution from
most, if not all, of these underlying source materials. In Figure 12, the relative
contributions from each source are displayed graphically.

Figure 12. Source contributions to sediment samples; 6-source model

From these plots, it appears that major contributions to most of the sample
locations come from sources 3 and 4, with somewhat lesser contributions from
sources 1 and 6. Sources 2 and 5 seem to contribute to the fewest samples.

Two of the six sources appear to be related to dioxins that originate from
pentachlorophenol and two others appear related to patterns that are similar to
those from degradation of PCBs (see below). Thus, it was considered interesting
to restrict the number of sources in the ALSmodel to only 4. When this is done, the
residual profiles, which show features not contained in the ALS model, indicate
that only a few samples are not well modeled. In particular, in Figure 13, three
samples show more deviation than other samples and are highlighted in the plot
with thicker lines.
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Figure 13. X-residuals for 4-source mixture analysis model; thick traces denote
aberrant samples

By making a model with more sources, these residuals would diminish. On
the other hand, it is these three samples that largely drive the 6-source ALS model.
In fact, observing the normalized profiles of Figure 8 again, where the traces for
the aberrant samples are highlighted (Figure 14), we can see that:

• the extra intensity of the first highlighted trace of Figure 14 occurs in the
OCDD congener and is represented by Source 6 of Figure 11

• the extra intensity in the second and third highlighted traces occurs in the
1,2,3,4,7,8-HxCDF congener and is represented by Source 2 of Figure 11

With only three outlier samples, it is not clear if they represent true sources
that need to be incorporated into the evaluation or if they represent inconsistencies
in either the sampling or in the instrumental analysis. The fact that two of the
samples show much the same pattern (in particular the relatively high 1,2,3,4,7,8
HXCDF content) implies that these samples cannot be completely dismissed from
consideration. It is instructive, however, to look at a 4-source model and compare
results.

When a 4-source mixture analysis is computed (see Figure 15), sources 1 and
4 change only a little from their shapes in the 6-source model (recall Figure 11).
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Figure 14. Normalized TEF-scaled profiles; thick traces denote aberrant samples

Figure 15. Source profiles following mixture analysis; 4 source solution
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In addition, Source 2 in the 4-source model appears to be a composite of
sources 2 and 5 in the 6-source model, and Source 3 in the 4-source model appears
to be a composite of sources 3 and 6 in the 6-source model.

In the 4-source model, the contributions from each source to the samples are
shown in Figure 16. The major contributions derive from sources 3 and 4, as
shown by the greater cluster of points in the upper end of their axes.

Figure 16. Source contributions to sediment samples; 4-source model

A comparison of the source profiles in the 6- and 4-source unmixing models
shows a strong degree of correspondence between appropriately matched profiles.
While some differences in source profiles and source amounts can be identified
between the two unmixing models, a comparative evaluation indicates that these
differences are relatively small. The two unmixing models lead to results that
are not markedly different with respect to source profiles and spatial patterns of
source contributions. Thus, the 4-source model was used as the basis for all further
evaluations.

Source Interpretation

To understand the nature of the source patterns determined via mixture
analysis, a database of comparison patterns was constructed. The patterns for
comparison were drawn from multiple sources, listed in the Methods section.

After removing duplicate patterns, the comparison set comprised 154 patterns
of the 17 dioxin/furan congeners. These patterns were compiled into a spreadsheet,
TEF-scaled, then merged with the 4 source profiles from mixture analysis on the
TEF-scaled sample set. The combined data were analyzed in two complementary
manners: first by hierarchical cluster analysis (HCA), then by a tabulation of
correlation coefficients. These approaches are discussed below.

The results from the cluster analysis are best viewed in the form of a
dendrogram (Figure 17), which shows samples in clusters according to their
relative similarity. In the figure, the leaf nodes for the 4 sources are shown as
points with corresponding labels. Thus, we can see in the dendrogram that the
source patterns are distinguishable from each other and that there are groups of
comparison patterns similar to each source.
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Figure 17. HCA dendrogram comparing source to comparison patterns

Based on the nearest neighbors in theHCAdendrogram and on the comparison
patterns with highest correlations to the source patterns, conclusions can be drawn
about the nature of possible forms of dioxin contamination. It appears that four
types of input are present.

The comparison pattern that most resembles that of Source 1 was from a
New Zealand study of Silvex-contaminated sediments (see Figure 18). Other
comparison patterns that demonstrated an acceptable match came from samples
of wood and fly ash.

Source 2 did not have a strong match from any one comparison pattern,
although the major furan peak distributions were similar to the patterns seen
among PCB sources (for example, Figure 19). Comparisons from industrial and
residential soot also exhibited patterns that were similar.

A very strong similarity to pentachlorophenol was demonstrated for the
Source 3 pattern (Figure 20). PCP-treated utility poles and wood forms show the
characteristic intense hepta-chloro dioxin congener.
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The fourth source profile matched well the source patterns from several other
hog-fuel boiler effluent examples from Canadian sources (see Figure 21).

Figure 18. Best match to Source 1 (black): New Zealand sediment (gray)

Figure 19. Best match to Source 2 (black): Aroclor 1254 (gray)
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Figure 20. Best match to Source 3 (black): PCP-treated utility poles (gray)

Figure 21. Best match to Source 4 (black): Canadian hog fuel boiler (gray)

Spatial Interpretation

When source amounts are re-scaled to their respective TEQ values, the result
is called a source increment. Spatial interpolation of the source increments can
show the relative importance of a source as a contribution to each sample as well as
the relative importance of a source to harbor-wide sediment contamination. TEQ
increments are shown below using the same scale among the four sources such
that the relative magnitude of sources can be visually compared.
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The majority of sample locations for which Source 1 is the dominant
contribution occur in the lagoon (see Figure 22). This source does not have a
significant contribution to the remainder of the harbor.

Figure 22. Source increment map--Source 1

Source 2 is a low contributor to locations in the lagoon, in the western harbor,
and adjacent the Rayonier facility (Figure 23). It is not important elsewhere in the
harbor.

Figure 23. Source increment map--Source 2
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Contributions from Source 3 are high in the western harbor, the lagoon and
adjacent the Rayonier site (Figure 24); many near-shore locations in the western
and middle harbor show moderate contributions as well.

Figure 24. Source increment map--Source 3

Source 4 contributions are highest in the lagoon and at the Rayonier site.
Moderate contributions can be seen from this source in the near and off shore
regions of the western and middle harbor (see Figure 25).

Figure 25. Source increment map--Source 4
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Discussion
In this section each of the four dioxin sources to Port Angeles Harbor

sediments identified through mixture analysis are discussed separately, including
an evaluation of their contribution to harbor-wide sediment contamination, spatial
patterns and potential sources.

Source 1

The Source 1 dioxin profile is most similar to that of Silvex and wood ash.
It is the most minimal contributor to harbor-wide dioxin contamination of the
considered sources, comprising approximately 6 percent of surface sediment TEQ.
The Source 1 spatial pattern is unlike the other sources in that it is almost entirely
restricted to the western harbor lagoon (Figure 22). This pattern suggests direct
discharge of Source 1 to the lagoon from the nearby upland and relatively little
input of Source 1 to the remaining harbor from other upland locations.

Possible mechanisms by which Source 1 dioxin became deposited in the
lagoon are apparent based on its industrial history. The lagoon is a natural feature
formed in accordance with Ediz Hook, enclosing the northern harbor. Since
the early 1900s the lagoon has served as a log storage area for the adjacent
paper mill prior to the pulping process. The herbicide 2,4,5-T may have been
applied to the surrounding upland for weed control or directly to the lagoon as an
algaecide. Algae control in the lagoon would have been particularly important, as
the shallow, stagnant conditions of the lagoon promote biological fouling of logs
prior to processing.

The lagoon also served as a disposal site for the adjacent mill. Before
the practice of log storage in the lagoon was abandoned in the mid-1970s,
approximately 12 acres of the lagoon were filled with ash from the mill’s
wood-fired boiler. Regardless of what the exact source material is for Source 1
dioxin (2,4,5-T and/or wood ash), historic industrial uses of the lagoon suggest
input of Source 1 dioxin from adjacent upland activities.

Source 2

The Source 2 dioxin profile ismost similar to that of a number ofmanufactured
PCBs. In contrast to Source 1, the spatial pattern of Source 2 dioxin suggests
multiple physically separated point source locations. Interpolation of Source 2
increments (Figure 23) shows a distinct pattern, with clusters of high-TEQ within
the lagoon, close to the western harbor shoreline, and within the former Rayonier
log pond. Although present in multiple areas of the harbor, Source 2 dioxin only
contributes approximately 10 percent to total TEQ harbor-wide.

Ancillary sediment data support the theory that Source 2 dioxin is at least
partially derived from PCBs. PCB Aroclors were generally not detected in
sediments of the central and outer harbor where Source 2 increments are the
lowest. When detected, the greatest total PCB Aroclor concentrations were
confined to locations of highest Source 2 increments. The co-occurrence of PCBs
and Source 2 in Port Angeles Harbor sediments suggests that Source 2 dioxin is a
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chemical component of PCBs and they are transported and deposited in a similar
manner.

The spatial distribution of Source 2, as well as PCBs, suggest the former
Rayonier Mill property and western harbor industries are the primary sources of
this form of dioxin to harbor sediment. There is a high likelihood that PCBs were
extensively used at these facilities. PCBs have historically been used as coolants
and lubricants in electrical equipment such as transformers and capacitors, and
they are found in older fluorescent lighting fixtures and electrical appliances,
paints, pesticide additives, sealants, building materials, and hydraulic oils (44).
PCBs were identified as contaminants of concern for the marine environment near
the former Rayonier Mill property because of their possible presence in process
wastewater effluent and from incidents of leaking transformers (45). Similar
concerns regarding PCB discharge also exist for other pulp and paper mills and
wood treatment facilities of the western harbor.

Source 3

The Source 3 dioxin profile is most similar to that of manufactured PCP (both
oil and water soluble forms) and wood treated with PCP as a preservative. The
spatial pattern of Source 3 in harbor sediments is dominated by a likely point source
in the western harbor, in the vicinity of a paper mill that has been in operation since
the early 1900s (Figure 24). While Source 3 was found to contribute 40 percent to
total TEQ harbor-wide, virtually all Source 3 dioxin is found in the western harbor
and lagoon. Lower levels of Source 3 dioxin also exist in small, isolated pockets
in close proximity to the former Rayonier Mill property.

Almost all PCP production in the United States has been used for commercial
wood treatment and slime control in pulp and paper production (46). It is expected
that sediments of Port Angeles Harbor may have a dioxin component derived from
PCP because of the long-term existence of both lumber and pulp and paper mills
along the harbor waterfront. Despite PCP being a likely source of dioxin in harbor
sediments, PCP itself has not recently been detected in any surface sediments of
the harbor (21). This absence is likely due to the rapid degradation rate of PCP
(47) compared to its associated dioxin. Additionally, the lack of PCP in harbor
sediments may indicate that Source 3 dioxin is relatively old and not associated
with modern upland activities.

The co-association of Source 3 dioxin and mercury in Port Angeles Harbor
surface sediments (Figure 26) implies that these chemicals may be derived from
a common upland source in the western harbor (Figure 2). Because of their
synergistic value, the combined use of PCP and mercury played an important role
in slime control for the pulp and paper industry between 1940 and 1970 (48).
These slimicides prevent the uncontrolled growth of microorganisms that can
result in slime deposits. When unchecked, slime can clog filters, screens, and
pipelines, and result in spots and breaks in the paper sheet. The chemicals used
as slimicides have varied over the past century and have often been implicated as
highly toxic components of mill effluent and major sources of aquatic pollution
(49).
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Figure 26. Correlation between Source 3 increments and mercury concentrations

Source 4

The Source 4 dioxin profile is most similar to that of air emissions, ash,
and effluent from facilities with hog fuel boilers burning salt-laden wood. The
spatial pattern of Source 4 is much more dispersed than the other dioxin sources
previously discussed (Figure 25). Source 4 contributes 44 percent to harbor-wide
TEQ, making it the most abundant source of dioxin to sediments of the harbor.
Additionally, Source 4 is the dominant contributor to total TEQ of the southern
and central harbor, regions where the other sources generally have much lower
contributions.

Due to the waterfront location of facilities on Port Angeles Harbor and the
abundance of wood as a source of fuel for onsite burners, burning wood chips
and wood wastes coming from logs floated in the harbor was a common practice.
This salt-laden wood was utilized as boiler fuel at four industrial properties along
the harbor waterfront, including at the former Rayonier Mill and adjacent to the
western harbor lagoon. Burning salt-laden wood in an industrial boiler can result
in significantly higher emissions of dioxins/furans than can burning salt-free wood
(28, 50–53).

Source 4 dioxin in sediment may reflect contributions from more than one
hog fuel boiler source and also mixtures of boiler ash and stack emissions.
Additionally, Source 4 may be introduced to the harbor through a variety of
transport pathways that are physically disconnected from the boilers themselves.
Prior to deposition in the harbor, transport of Source 4 dioxin may involve:

• Aerial deposition of boiler emissions onto the harbor surface;
• Aerial deposition of boiler emissions in the uplands and subsequent

delivery to the harbor in stormwater runoff and municipal effluent;
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• Erosion/runoff of boiler ash from industrial properties and disposal sites;
• Incorporation of boiler ash into industrial process water and effluent; and
• Direct disposal of boiler ash into the harbor.

The complexity of possible transport mechanisms prior to deposition in
sediments make the partitioning of Source 4 between the different industrial
locations challenging. Based on their proximity to the highest Source 4
increments, both the former Rayonier Mill and western harbor properties are likely
sources of Source 4 dioxin to harbor sediments. The dominant role of Source 4
in the southern and central harbor, as well as overall dominance of Source 4 in
surface sediments harbor-wide, suggests that delivery from stormwater runoff is
a more important transport mechanism for Source 4 than other dioxin sources.

Conclusions
The chemometric evaluation of Port Angeles Harbor PCDD/F congeners

identified four source patterns that provide a good model for measured TEQ
values. Each of the four proposed source patterns has an analog in known
dioxin-producing materials:

• Source 1 – 2,4,5-T or wood ash
• Source 2 – PCBs
• Source 3 – Pentachlorophenol
• Source 4 – Emissions and effluent related to burning of salt-laden wood

in hog-fuel boilers

Spatial interpolation of dioxin source TEQ increments allowed for the
determination of the relative contribution of each source to harbor-wide dioxin
contamination.

Each of the dioxin sources has a unique spatial pattern in harbor sediments,
which, along with supplemental data, can be used to identify potential upland
source locations and to understand mechanisms by which the dioxin became
deposited.
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Chapter 5

Multivariate Curve Resolution: A Different
Way To Examine Chemical Data
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During the last 40 years, Multivariate Curve Resolution (MCR)
has emerged as a powerful tool to investigate (bio) chemical data
sets. MCR has evolved from the analysis of a single data set to
multiset and multiway data analysis. MCR has been extended
to the investigation of new application domains and of more
challenging problems. MCR is achieving a mature state and it
includes different ways to ascertain and validate the reliability
of its solutions

1. History, Concept and Problem To Solve

Multivariate curve resolution (MCR) is already more than 40 years old.
Nowadays, Multivariate Curve resolution is the generic denomination for a
family of methods used to solve the ubiquitous problem of mixture analysis.
This is named differently in other scientific fields, like blind source separation in
telecommunications, source apportionment in atmospheric studies, factor analysis
in psychometrics, or end member mixing analysis in geosciences, or endmember
signatures extraction in remote sensing hyperspectral imaging tele detection. In
all these cases the goal of the data analysis is to provide a bilinear decomposition
of mixed raw data into meaningful pure component profiles.

The first description of the MCR method in chemistry was given in 1971
by Lawton and Sylvester (1). Their data consisted of a few two dye mixtures
at different concentrations measured at 30 wavelengths, from 410 to 700 nm.
Their goal was to estimate the UV-visible spectra of the two dye molecules, in
the absence of other information. They termed their approach self-modeling
curve resolution (SMCR). In this simple data example, the basic aspects of
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multivariate curve resolution were already defined, including the concepts of
ambiguity, feasible solutions and constraints (non-negativity). The region of
feasible solutions in the subspace of the two first eigenvectors was obtained and
graphically displayed. A similar approach was later extended by Borgen and
Kowalski (2) to mixtures of three components. Extension to more than three
components was difficult and new perspectives to the problem were postponed
until more recently (3). Early developments of multivariate curve resolution
methods can be encountered in the review about Mixture Analysis by Hamilton
and Gemperline (4). Basically, during this initial period of time, two types of
approaches were emerging to solve the multivariate curve resolution problem.
On one side there was the proposal of methods attempting to find solutions of
the multivariate curve resolution problem using a direct (non-iterative) strategy
to calculate algebraically a set of feasible solutions. In these non-iterative
approaches, the concepts of rank annihilation (5) and of local rank (6) were
usually used. Examples of this type of approaches were rank annihilation
evolving factor analysis, RAFA (7), window factor analysis, WFA (8), and
the heuristic evolving latent projection, HELP (9), methods. There were also
methods which try to get feasible solutions directly from the data using concepts
like ‘purest variables’, such as the Simple-to-use Interactive Self-Modeling
Mixture Analysis, SIMPLISMA (10), orthogonal projections, such as Orthogonal
Projection Approach, OPA (11), or ‘key set’ variables, such as Key Set Factor
Analysis, KSFA (12).

On the other side, other approaches were developed to improve initial
estimates by means of iterative approaches like Iterative Target Factor Analysis
method, ITTFA (13, 14), or from the Evolving Factor Analysis, EFA, and
Alternating Least Squares, ALS (15), approaches. Following the seminal work of
Lawton and Sylvestre (1), most of these methods used natural constraints such
as non-negativity for the concentration and spectra profiles. From the beginning,
it was clear that the application of constraints such as non-negativity and other
more powerful constraints was clearly facilitated alternating least squares (16)
approaches, and this promoted the fast progress of this type of approach.

From early 90’s and on, efforts in the development of multivariate curve
resolution methods were in two directions. One was in searching unique solutions
by means of implementation of constraints during the resolution process,
eliminating or minimizing ambiguities. The other trend was the extension of
MCR to handle more complex data structures, from the analysis of a single data
set ordered in a two-way data table or data matrix, to the simultaneous analysis of
multiple related data sets and multiway data structures. Decreasing ambiguities
by using constraints can be achieved in multiple circumstances, and playsa central
role for in curve resolution (see section 2 of this chapter). According to the
resolution theorems formulated by Rolf Manne in 1995 (16), the detection and
use of local rank and selectivity constraints (17) allow for the recovery of the true
profiles without ambiguities, whenever the data structure has a favorable structure
and conditions. Therefore, resolving a particular multicomponent system without
ambiguities depends on many circumstances on the proper estimation of its local
rank and selectivity regions and on the proper and active use of these properties.
For instance, the presence of selective regions of one particular component
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in one of the two modes (concentration or spectra), allows for the recovery
without ambiguities of the profile of this component in the other mode. Complete
resolution of a system will depend on how the profiles of the different components
are overlapped and on the fulfillment of the conditions stated by the resolution
theorems.

The other main trend sought in MCR development from the 90’s was the
extension of MCR methods to multiway/multiset data analysis. This was in
parallel to the introduction and consolidation of methods like Generalized Rank
Annihilation Method, GRAM (18), or Parallel Factor Analysis, PARAFAC (19),
in chemometrics. In section 4 of this chapter, multiset and multiway extensions
of the MCR-ALS method are described (17), including quadrilinear and mixed
multilinear models recently introduced (20–22). Another interesting aspect in
the development of MCR methods for multiset/multiway data analysis has been
the possibility of solving rank deficiency problems present in the analysis of
single data matrices. Rank deficiencies occur for instance in chemical reaction
systems where concentration profiles of the different constituents show linear
dependencies among them. Simultaneous analysis of the reaction system at
different initial conditions in matrix augmentation strategies can eliminate rank
deficiency problems associated with the analysis of a single data set (23, 24).

A step forward in chemical modelling from the late 90s has been the
extension of MCR methods to hybrid hard-soft type of modeling (25, 26). This
is especially interesting for systems involving chemical reactions where kinetic
or equilibria models can be imposed in the concentration profiles of some of the
system constituents. Hybrid approaches are superior to traditional deterministic
approaches since they allow for the presence of multiple disturbing effects of the
system apart from deterministic (hard) physically modelled part of the measured
data variance. It is clear that ambiguities are eliminated from those profiles
responding to the applied fundamental laws, which are fitted according to the
postulated model parameters, like equilibrium or kinetic constants (and related
species stoichiometries).

After all these years of continuous and steady development of MCRmethods,
the field of multivariate curve resolution has achieved a mature state. In the
next sections we will show this situation in more detail, in particular for one of
the more extensively applied MCR methods, which is the Multivariate Curve
Resolution Alternating Least Squares, MCR-ALS (17, 27), method. In the last
sections we will describe some recent application domains of this method, like
in environmental studies, in hyperspectral imaging, or in high throughput omics
analytical methods which ensure a further and wide spread of this method in the
near future.

2. MCR-ALS and Constraints

From a mathematical point of view the mixture analysis problem solved by
MCR methods can be described by a bilinear model. In this model, experimental
data are arranged in a table or matrix, D, where a number of spectra (i=1,...I,
or of any other multivariate instrumental response) from a set of samples (e.g.
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chemical mixtures formed by multiple constituents at different concentrations
or compositions) are arranged as a row vectors of this data matrix, having their
common wavelengths (j=1,...,J, instrumental channels) in the columns of the
matrix. The MCR bilinear factor decomposition model can be written using linear
algebra notation as:

where C (concentration profiles) and ST (spectra) are the factor matrices obtained
by the bilinear decomposition of the experimental data matrix D. This bilinear
decomposition is performed for a number of components (n=1,..,N), which
are contributing to the observed data variance in matrix D. In MCR methods,
this bilinear decomposition implies that the measured experimental spectra
are the linear combinatiosn of the pure spectra of the components present in
the analyzed mixtures weighted by their respective concentrations. The same
bilinear decomposition in matrix form can be described also by the following
element-wise equation

which implies that every element of the data matrix (every individual
measurement), di,j, for sample i=1,...,I, wavelength j = 1,..,J , is the sum of different
constituent contributions (n=1,..,N), defined by the product of the concentration
of these constituents in this sample, ci,n, by their signal contribution (intensity)
at this wavelength j, sn,j.. In these two Equations 1 and 2, E and ei,j refer to the
non-modelled noise/error/residual contributions. Stated in this way, the bilinear
model is expressing the generalization of Beer’s law in molecular spectroscopy,
at multiple wavelengths and for multiple mixture samples. Although MCR is not
restricted to the analysis of spectroscopic data, and without loss of generality,
the expressions used in previous equations are by far the most frequently used to
express the bilinear MCR model.

It is worth emphasizing that the bilinear decomposition expressed in previous
equation is similar to the one used in other chemometrics methods, such as in
Principal Component Analysis, PCA (28). However, the goals and the way
the bilinear matrix decomposition is performed are totally different. In PCA,
the bilinear decomposition is performed under the constraint of orthogonality
(non-overlapping variance) and with the goal of explaining maximum variance
for every component obtained sequentially during the decomposition. PCA
goals are usually explorative and interpretative, whereas MCR goals try defining
the contributions of the constituents (components) with physically meaningful
profiles (concentration and spectra profiles).

As mentioned in the previous section, a typical way of solving the MCR
problem is by means of an Alternating Least Squares optimization, using the so-
called MCR-ALS method (17, 27, 29, 30). Equation 1 is solved iteratively in two
constrained least squares steps:
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In the first least squares optimization step, Equation 3, spectra matrix ST is
unknown and it is estimated by projection of the PCA filtered data matrix, DPCA,
onto the subspace spanned by the current estimation of the concentration matrix,
C. And in the second least squares optimization step, Equation 4, the same is
performed by exchanging the concentration matrix C, which is now unknown,
by the spectra matrix, ST which is now considered known, i.e. by projection of
the PCA reproduced data matrix, DPCA, onto the subspace spanned by the current
estimation of the spectra matrix, ST.Both equations are solved iteratively by linear
least squares under constraints which should be defined previously (see below).
The use of PCA filtered matrix instead of the experimental matrix during ALS
stabilizes the calculations and filters non-embedded noise in the components.

Some additional remarks about the ALS procedure should be mentioned.
First, the initial number of components (constituents) used in the bilinear
decomposition and ALS can be estimated as in PCA. This should be equal to the
number of components needed to explain ‘sufficiently’ the systematic changes
(no noise) observed in the data variance. To start the ALS optimization, initial
estimations of the profiles for the selected number of components are required,
either for C or for ST. They can be obtained in different manners, for instance
using any of the direct methods previously mentioned in section 2 (10–12, 15)
or simply by direct selection of uncorrelated rows or columns of the analyzed
data matrix. And, finally, convergence and finalization tests of ALS optimization
should be tested by means of relative changes in data fitting parameters (such as
lack of fit), between consecutive iterations, maximum number of iterations, and
maximum number of divergence steps. MCR-ALS has been described in detail in
several publications (7, 27) and its implementation in a MATLAB user friendly
graphical interface (29, 30) is freely available (31).

Description of Constraints

Constraints are the corner stone of MCR iterative methods and can be defined
as the systematic properties used to bring the iterative resolution process to get
the optimal and chemically meaningful solution for the concentration and/or
response profiles (17, 32, 33). After selection of appropriate initial estimates, the
alternating least squares optimization of concentration profiles and pure responses
under constraints can start. Implementation of constraints converts the chemical
or mathematical knowledge about the profiles into a mathematical condition,
which can be set in two ways: forcing the profile (or some elements in a profile)
to be equal to some pre-set values or to be higher or lower than them. These two
options define the so-called equality and inequality constraints, respectively (33,
34). Inequality constraints are generally preferred since they modify the profiles
more gently, and minimize the disturbance to the convergence of the resolution
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process. However, the sound application of an equality condition in some
instances (e.g., accurate knowledge of a pure spectrum) significantly decreases
the ambiguity of the final resolution results. The kinds of knowledge that can be
incorporated into a constraint are very diverse. The main distinction is between
constraints linked to chemical properties of the concentration or response profiles
and mathematical properties dependent on the inner structure of the data set
(graphical summary for some of the constraints is provided in Figure 1. Typical
chemical constraints are as follows:

Figure 1. Examples of common constraints used in MCR. a) non-negativity, b)
unimodality, c) closure, d) hard-modeling. Bold black profiles on the left plots
are unconstrained. Red profiles on the right profiles have been constrained.
(reproduced from de Juan A.; Tauler R. Crit. Rev. Anal. Chem., 2006, 36, 163)

Non-Negativity

Forces the profiles to be positive and it can be implemented replacing negative
values by zeros or with softer algorithms, such as non-negative least-squares or
fast non-negative least-squares. It applies to all concentration profiles and to
many instrumental responses which, by nature, should be positive, for example
ultraviolet (UV) absorption spectra, mass spectra, etc.

Unimodality

This constraint allows the presence of only a singlemaximum per profile. This
specific condition is fulfilled by peak-shaped signals, for example, elution profiles,
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some voltametric signals, and monotonic reaction profiles (always increasing or
decreasing).

Closure

This is a mathematical expression for the mass balance condition in
chemistry. It applies to some concentration profiles of reaction systems, forcing
the concentration profiles within a closed system to add up to a certain constant
value (the closure constant).

Known Pure Spectra /Concentration Profiles

This is a kind of equality constraint, which makes the concentration profile
and/or spectrum of a component to be equal to a certain known predefined shape
according to a mathematical function. In the concentration directions, these
functions are, usually, physicochemical models (kinetic or equilibrium).

Mathematical constraints usually refer to properties linked to subspaces
of data sets, for example, concentration windows with a certain rank value or
zero-concentration windows for particular components. Constraints related to
mathematical conditions are:

Local Rank/Selectivity

This constraint defines the zones of absence of components in some regions
(windows) , usually, in the concentration profiles. The selectivity expresses the
presence of a single component in a specific concentration window, and the local
rank information is about the absence of some components in the concentration
window. Incorporation of local rank information suppresses the ambiguity in the
profiles retrieved by MCR (16, 27).

Correspondence of Species

This condition is only applicable to the augmented data matrices (with
augmented concentration direction) and expresses the correspondence and
presence/absence of components in the analyzed samples (17, 27, 35, 36). It is
a strong constraint to suppress ambiguity, similarly to that of local rank. The
known composition of standard samples (presence/absence of analytes and
interferences), makes it a desirable constraint in calibration problems.
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Model Constraints

These are constraints applicable to multiset and only to the augmented
matrices that may be present in the decomposition model. Although MCR gives
by default a bilinear model, the conditions of trilinearity (20, 36), multilinearity
(37) or factor interaction (like in Tucker models) (38, 39) can be implemented in
a component-wise way. Therefore, completely bilinear, completely trilinear or
hybrid models can be set to be obtained in the final MCR results.

Hard-Modeling

Forces the concentration profiles to be fitted by a parametric physicochemical
model and the parameters of the model are obtained as an additional output.
This constraint implies a model fitting task be performed during the iterative
optimization process (36, 40). When this constraint is applied, the related
concentration profiles do not present ambiguity. It can also be applied to pure
analytical responses when the shape of the pure signal can be defined by a
parametric equation.

Correlation Constraint

In this case, internal univariate calibration models can be applied to particular
concentration profiles of components in the system. The model is established
between concentration values obtained with MCR (in arbitrary units) and
real concentrations in calibration samples. The model is used to predict real
concentrations in unknown samples (35, 41–43)

All these constraints are applied optionally and can be implemented
differently to the concentration and response profiles of the data set, to the
different components in the data set and to the different subsets in a multiset
structure. The application of constraints can also be modulated according to
tolerance criteria. The flexibility in the application of the constraints explains the
versatility of MCR algorithms, which can adapt to very diverse scenarios through
the proper selection of these restricting conditions.

In MCR, the constraints can be implemented using two approaches: the first
approach directly incorporates the constraints into the least-squares procedure
(44–47) via a penalty function (48, 49) or related method, whereas the second one
constrains the profiles in separate steps from the least-squares fitting (external
constraints). The direct methods have the advantage of guaranteed convergence,
but implementations are not available for all of the constraints described above,
and many of the available constraints are computationally expensive. The external
methods can sometimes have more convergence problems; however, their
implementation is generally much faster and their application more flexible than
the least-squares optimal constraints. Notably, these external implementations
allow for a profile-wise selection in the application of constraints, which is
not feasible in more strict least-squares procedures. These methods are often
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employed in a manner that allows for some deviations from the strict application
of the constraint condition (17, 50). Whatever is the approach, used to implement
the constraints, the problem to be solved should always involve the application of
constraints fulfilled by the profiles (concentration, C, and spectra, ST, in Equation
1) describing the true data variance sources and, in no case, an alternative set of
profiles fitting better the data and not fulfilling the applied constraints (apart from
noise and loss of degrees of freedom) is possible. Therefore, the MCR solution
fulfilling the constraints should be the best solution also from a least-squares point
of view. In this sense, constraints are mostly used to guide the optimization to the
most physically meaningful solution and to reduce rotation ambiguities.

The application of constraints should be fully justified from a chemical or
a mathematical point of view. Misapplying a constraint can produce much worse
results than performing a completely unconstrained optimization. In case of doubts
about the appropriateness of introducing a particular constraint to resolve a data
set, some guidelines can be followed, such as gradually introducing constraints
in the resolution process, following an increasing order of strength, and checking
the effect of the introduction of each constraint on the variation of the fit quality
in the reproduction of the raw data set. A significant decrease in the fit and the
emergence of residuals with non-random trends linked to the introduction of a
particular constraint may imply that the data set does not really fulfil the selected
condition or that, at least, some deviations from the ideal behaviour should be
permitted.

3. Extended MCR to Multiset and Multiway Data Analysis

MCR analysis is enhanced significantly when multiple data sets or multiset
data are simultaneously analyzed using the extension of this method (17, 27, 51).
The multiset data are analyzed by MCR via matrix augmentation schemes, and
the typical application of MCR bilinear models to augmented data matrices can
be extended to impose multiway structures during the resolution process in the
form of constraints (35). The most commonly used data arrangement is column-
wise augmented matrices, Daug, keeping the same number of columns, which, in
MATLAB notations is written as [D1;D2;D3;...;DK] for different data matrices Dk,
k=1,..K. For this type of augmented data matrix, the MCR bilinear model can be
written as:

[D1;D2;D3;...;DK] = [C1;C2;C3;...;CK] ST + [E1;E2;E3;...;EK]

Or in a more compact form
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The bilinear model described above is formulated using a single spectra
matrix ST with the pure spectra of the different components present in
all the considered Dk data matrices. The augmented concentration matrix
[C1;C2;C3;...;CK] describes freely the concentration changes of the resolved
components in each related Dk data matrix. The multiset analysis facilitates
the possible submatrix-by-submatrix application of new constraints. One of
these constraints is the correspondence among the components in the different
simultaneously analyzed matrices. This constraint fixes the sequence and the
presence or absence of components in a particular Ck and/or STl matrices.
This type of constraint contributes significantly to the elimination of rotation
ambiguities, which facilitates the achievement of unique resolution conditions
(16, 17, 27). In case of multiway data (also called multimode data), the bilinear
model previously described for augmented data matrices can also be extended
to the so-called multilinear models, like the PARAFAC (19, 52) or the Tucker
models (39, 52). In MCR-ALS, these type of multilinear models are implemented
as constraints during the alternating least squares optimization as explained in
detail in (17, 27, 36, 51). Next, a brief description of the implementation of these
model constraints can be found.

The Trilinearity Constraint in MCR-ALS

The expression of the trilinearmodel to describe decomposition of a three-way
data set, is given element-wise as:

and the reproduction of each slice data matrix (slice k) is carried out as follows:

where in Equation 7, dijk represents the ijkth element in the three-way data set (I
= 1,..I, j = 1,...J and k = 1,...K slices), n is the number of components (chemical
rank) common to the three modes (n = 1,…,N), cin, sjn and zkn are the elements
of C, ST and Z factor matrices (component profiles in the three modes) for
component n and eijk is the residual term (part of the data not explained by
the model). The chemical meaning of the factor matrices (C and ST) is the
same as for the analogous matrices considered in the description of the bilinear
model decomposition in MCR analysis, and the factor matrix Zk of loadings in
the third direction or mode is a diagonal matrix giving the relative amounts of
every component in each considered data matrix Dk. A trilinear model forces
decompositions to give unique solutions for the three factor matrices (apart from
scale and trivial permutation rotation ambiguities), and avoids the presence of
rotational ambiguities associated with lower structured bilinear models (53).
Because of the inherent freedom in the modeling of the profiles of the augmented
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Caug matrix, the so-called trilinear structure is incorporated as an optional
constraint during the ALS optimization of the Caug profiles (see Figure 2) (20).

Figure 2. Implementation of the trilinearity constraint in the MCR-ALS algorithm
(Ä stands for the Kronecker product between two vectors, see 54 and text for
details of the procedure), reproduced from Comprehensive Chemometrics, S.

Brown, R. Tauler, and R. Walczak, Eds. Elsevier, Oxford, 2009 Vol. 2, pp 473-505.

As shown in Figure 2, when the trilinear constraint is applied during
each iteration of the ALS optimization, the concentration profiles of the same
component in the different matrices, cnk (k=1,2,3, n=1,2 components in this case),
are forced to be invariant in shape. For a full trilinear model, every component
of the matrix, Cn, is approximated by its one-component bilinear decomposition
(using for instance PCA or SVD) as follows:

where cn is one column vector (I rows) which contains the common (average)
concentration profile of this n component in the different K matrices and znT is
a row vector (N columns) with the relative amounts of this concentration profile
in the different K matrices. The appropriate Kronecker product of these two
vectors rebuilds the augmented concentration vector of this component (54). Caug
augmented matrix is finally obtained and updated by appropriate rearrangement
of each of its columns corresponding to the concentration of different individual
components in the different matrices. cn and znT vector profiles give the
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current estimation of the first and third mode loading profiles of the considered
component. When MCR-ALS optimization finishes, only the recovered spectral
information in ST matches with the PARAFAC profiles. However, the matrix
Caug contains implicitly the information related to matrices C and Z, which can
be recovered using a similar procedure as in the application of the trilinearity
constraint in Figure 2.

The Quadrilinearity Constraint in MCR-ALS

The procedure previously described for the implementation of the trilinearity
constraint for three-way data can be extended to the implementation of the
quadrilinearity constraint for four-way data. The expression of the quadrilinear
model to describe the decomposition of a four-way data set ‘DIJK,L’, is given
element-wise, as:

where dijkl represents the ijklth element in the four-way data set (i = 1,..I; j = 1,...J;
k = 1,...K; and L=1,…L), n is the number of components (chemical rank) common
to the four modes (n = 1,…,N), cin, sjn, zkn and yln are the elements ofC, ST , Z, and
Y factor matrices (component profiles in the four modes) and eijkl is the residual
term (part of the data not explained by the model). The chemical meaning of the
factor matrices (C and ST) is the same as for the analogous matrices considered
in the description of the bilinear model decomposition in MCR analysis, and the
factor matrices Z, and Y belong to the loadings in the third and fourth directions
or modes, respectively.

A four-way dataset ‘DIJK,L’, of dimensions I,J,K, and L in the 1st, 2nd, 3rd,
and 4th mode respectively, can be arranged in an augmented column-wise manner
(Daug) where three of the modes (I, K and L) are concatenated and intermixed in
the column direction of the data matrix, and the other mode J is left invariant in the
row direction (Figure 3). MCR-ALS can be applied to this augmented data matrix
as described in Equation 6, Daug= CaugST+Eaug, where Caug is the augmented
concentration matrix containing the first, second and third mode profiles and ST is
the spectra (loadings) matrix for the second mode, and Eaug is the error term.

Schematic representation of the quadrilinearity constraint implemented
in MCR-ALS model (MCR-ALSQ) to analyse a four-way dataset, DI,J,K,L, is
provided in Figure 3. In the same figure, the relation with bilinear (MCR-ALSB)
and trilinear modelling (MCR-ALST) and the application of corresponding
modelling constraints is also displayed. In brief, the quadrilinear constraint is
applied during the ALS optimization of the augmented concentration matrix
(Caug). This quadrilinear constraint can be applied independently and optionally
to each component of the data set, giving more flexibility to the whole data
analysis and allowing testing full and partial quadrilinear models. This approach
can be extended algorithmically to any multilinear model. See references (22,
37) for preliminary applications of this constraint to environmental data sets.
Following these ideas, a generalization of the implementation of trilinearity and
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quadrilinearity constraints to any type of multilinear model in MCR-ALS is
possible and under development.

Figure 3. Implementation of the quadrilinearity constraint in the MCR-ALS
algorithm (see text for details of the procedure); reproduced from Malik, A.;

Tauler, R. Anal. Chim. Acta, 2013, 794, 20-28.

Interaction between the Profiles of Different Components

The general expression to describe the decomposition of three-way data sets
where interaction between components is possible is given in Equation 11:

where dijk represents the ijkth element in the three-way data set, cip, sjq and zkr
are the elements in C(I,Np), S(J,Nq) and Z(K,Nr) factor matrices (loadings in
the three modes) used to reconstruct the dijk element of D(I,J,K) and eijk is the
residual term in E(I,J,K). Np, Nq and Nr are the number of components considered
in each of the three modes, not necessarily equal as in the trilinear model, in
which Np=Nq=Nr=N (Equation 7). gpqr is the pqrth element of the core array
G(Np,Nq,Nr), where the non-null elements are spread out in different manners
depending on each particular data set. The decomposition of a three-way array
D according to Equation 11 is called the Tucker3 model (39, 52) in multiway
literature. Restricted Tucker3 models are a simpler type of Tucker3 models, where
only a small number of possible selected interactions (triads) is allowed. To do so,
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the elements of the core matrix G unrelated to the selected triads are set equal to
zero.

MCR-ALS can be adapted to implement situations where the components
interact, with different number of profiles (loadings) in the different modes.
Figure 4 shows graphically how this can be achieved for an example where two
components have the same shape for their concentration profiles. In the example
shown in this Figure, the two suitable column profiles on the augmented Caug
matrix are first grouped to give the row-wise augmented concentration matrix
[C1,C2]. This [C1,C2] matrix has a number of rows equal to the number of rows
in the individual matrices and a number of columns equal to twice the number of
matrices simultaneously analyzed because two components have the same profile
shape (2xK). This folded matrix containing the profiles of the two components
with common shape for the concentration profile is then approximated by their
bilinear decomposition (using for instance the first component of PCA or SVD)
as:

Figure 4. Implementation of the Tucker3 model constraint in the MCR-ALS
algorithm (Ä stands for the Kronecker product between two vectors, see 54 and
text for details of the procedure); reproduced from Peré-Trepat, E.; Ginebreda,

A.; Tauler, R. Chemom. Intell. Lab. Syst. 2007, 88, 69–83.
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This first component bilinear decomposition gives directly the loadings (the
shape of the concentration profile) in the first mode c, and the loadings (scaling
factor) in the third mode zT, which after adequate component-wise rearrangement
gives matrix Z (see Figure 4).

The appropriate Kronecker product (39, 54) of them gives the two new
augmented profile vectors that substitute (update) the corresponding two columns
of the Caug matrix. Observe that in this case only one profile (one loading vector)
will be recovered in the first mode for the matrix C. On the contrary, two profiles
(two loading vectors) are recovered for the third mode matrix ZT, as well as for
the second mode, in the ST matrix. When these component interaction constraints
are inserted during each step of the ALS iterative optimization procedure, the
results obtained are analogous to those obtained for the restricted Tucker3 model
with one component in the first mode and two components in the two other
modes. This procedure can be generalized to other cases and it has been tested in
some data examples (21, 36, 38).

The augmented data matrix decompositions using bilinear model MCR-ALS,
give directly the loadings in the second mode (ST matrix) only, whereas the
loadings in the other modes are confounded in the augmented mode (Caugmatrix).
Using a proper profile rearrangement and SVD analysis on the suitable augmented
concentration profiles, as proposed in Figures 2-4, the loadings in the different
modes can be recovered, irrespective of the application of the multilinearity
constraints. An advantage of the multi-linearity constraint as it is implemented in
MCR-ALS is that it is applied independently and optionally to each component
of the data set, giving more flexibility to the whole data analysis and allowing for
full multilinear and for partial multiilinear models.

4. Reliability of MCR Solutions

As described earlier, MCR methods decompose the data matrix, D, into
the product of a concentration matrix C and of a spectral matrix ST using a
bilinear model (Equations 1-2). The contribution of each component to the
whole measured signal is the rank one matrix obtained by the vector product
of its concentration profile by its pure spectrum, i.e. for component n, cnsnT. E
matrix in Equation 1 gives the part of data matrix D that is not described by the
matrix product CST. Although MCR solutions have more physical meaning and
an easier interpretation than those obtained by PCA or SVD, they are not unique
in the general case. There are three types of ambiguities which usually occur
in the MCR solutions: permutation ambiguity, intensity (or scale) ambiguities,
and rotation ambiguities (17, 55). Permutation ambiguity means that there is no
sorting order on the MCR components. Therefore, they can be shuffled in the C
and ST matrix keeping the appropriate dyad correspondence of components and
obtain identical results. Under scalar ambiguity it is understood that only the
shapes of concentration profiles and spectra can be determined. Multiplication of
any concentration profile with a scalar and the corresponding spectrum with the
inverse of the scalar has no net effect. For any component or species, n = 1...N,
this can be illustrated as:
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which states that there is a scale indeterminacy in the product of concentration
by spectra profiles. If the scale of one of both, cn or snT, is known for one or
several components, their scalar ambiguity problem is solved. Or if, as it is
often done, the scale is fixed arbitrarily, then the problem is also solved for this
arbitrary selected scale. Due to the unavoidable scale ambiguity, only the shapes
of the concentration and spectra profiles can be determined and no absolute
scale (quantitative) information can be obtained in general, directly from MCR
methods unless external quantitative calibration information is provided during
the resolution process, like it is done for instance, in multivariate calibration
methods. However, relative quantitative information can be obtained directly by
curve resolution methods, when they are applied simultaneously to multiple data
sets or data matrices (56–58), like in other multiway data analysis methods (52).

The more critical and difficult type of ambiguity to be avoided in MCR
solutions is the so called rotation ambiguity. In absence of any constraint,
Equation 1 has an infinite number of solutions, since there are an infinite
number of matrices C and ST, providing the same result, the data matrix D. This
indeterminacy can be described mathematically as:

According to Equation 14, any invertible matrix T(N,N) gives a new set
of equivalent solutions of the MCR model. Or said in other words, any linear
combination of C and ST solutions will produce new solutions of the bilinear
model which will be equivalent from a mathematical point of view. The
application of appropriate constraints in MCR methods can limit the rotation
ambiguities. Apart from natural constraints like non-negativity, the more powerful
strategies to avoid rotation ambiguities in MCR methods are the use of local
rank and selective constraints (16, 17), the extension to simultaneous analysis
of multiple data sets (17, 20, 27) and the use of hard (deterministic) modeling
(26). Different methods have been proposed in the literature for the evaluation of
rotational ambiguities, including the development of methods for the calculation
of the boundaries of the so called feasible bands (1–3, 53, 59–63)

Calculation of the Extent of Rotation Ambiguities Using the MCR-BANDS
Method (53, 64)

Feasible MCR solutions include the whole range of linear combinations of a
particular MCR solution that fit the experimental data equally well and fulfil the
constraints of the system, as defined by appropriate rotation matrices T (Equation
14). For every component rotation matrices, T, define the range or band of feasible
solutions. Consider the possibility to define maximum and minimum values of
these rotation matrices, Tmax andTmin, which should fulfill the following equation:
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In the previous equation, initial values of C and ST matrices, Cinit and STinit,
are known and Cmin, STmin and Cmax, STmax correspond to Tmin and Tmax values.
A possible algorithm to determine the extent of rotation ambiguities is proposed
based on the definition of an objective function which should be maximized and
minimized as a function of T in order to find Tmax and Tmin values for every
resolved component. This objective function should be a scalar function of the
variables and should have well defined boundaries (maximum and minimum).
For a good performance of the optimization algorithm, this optimization function
is scaled, for instance between 0 and 1. The proposed optimization function is
defined as follows (53, 60):

This function gives the ratio between the contribution of a particular species
n (numerator of Equation 16) with respect to the total contribution for all the
components of the mixture (denominator of Equation 16). The optimization of
this objective function under constraints (see below) for each component n=1,..N,
either maximized or minimized, will give respectively an estimate of its maximum
andminimum solutions (fn(T) max andmin values), fromwhich the corresponding
Tmax andTminmatrices will be obtained as well as the corresponding cn,max, sTn,max
and cn,min and sTn,min profile dyads, for every one of the resolved component,
n=1,...N. These extreme solutions should fulfill the constraints of the problem and
give the relative maximum and minimum signal contribution of every component
according to the function defined by fn(T) in Equation 16, i.e. the ratio of the norm
of cnsnT over the norm of the whole signal contribution from all components,
CST. The variables to optimize are the elements of the rotation matrix T, As
pointed out previously, the number of variables in matrices T, and therefore the
complexity of the optimization, increases with the number of components of the
system. Since this is a non-linear optimization, initial values of the variables
(T) and of the component profiles (Cinic and STinic) are required. Details of the
implementation of the algorithm, called MCR-BANDS, are given in (53, 64). The
optimization of the function given by Equation 16 under constraints is performed
using a non-linear constrained non-linear optimization problem which is solved
using a Sequential Quadratic Programming (SQP) algorithm implemented in the
MATLAB Optimization Toolbox fmincon function (65).

Figure 5 shows an example of the extent of rotation ambiguities, calculated for
concentration/elution profiles, C, and spectra, ST, in a chromatographic separation
of three coeluting components obtained by usingmulti-wavelength UV diode array
detection. The considered data matrixD has strongly overlapped chromatographic
elution profiles. The detailed description and discussion about the dataset and
results can be found in (53). An indicator of the extent of rotation ambiguity for
component n can be the difference between maximum and minimum values of the
fn(T) function, which will be zero in case of unique solutions and will increase with
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extent of ambiguity. Plotting the profiles related to the boundaries, as in Figure
5, will indicate the location and magnitude of the rotation ambiguity, and which
profiles are most affected by this phenomenon.

Figure 5. Extent of rotation ambiguities calculated for the component profiles
of data matrix D consisting of overlapped chromatographic elution profiles.
Solid lines give the extreme solutions (Equation 16) obtained by MCR-BANDS
using the non-negativity and spectra normalization constraints. Dotted lines
are the MCR-BANDS solutions using non-negativity, spectra normalization
and selectivity/local rank constraints. Dash-dotted lines are the ‘true’ profiles.
Dashed lines are the profiles obtained using MCR-ALS. Figures 5A, 5B and
5C give the elution profiles of species 1, 2 and 3, respectively, and Figures 5D,
5E and 5F the corresponding spectra profiles; reproduced from R. Tauler J.

Chemom. 2001, 15, 627.
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Error Propagation and MCR Solutions

Evaluation of error estimates due to propagation of experimental errors is
also important in the quality assessment of MCR results. Analytical propagation
expressions can be proposed when working with linear methods and known
experimental uncertainties (66). Unfortunately, these expressions are unknown
for MCR methods. In order to obtain error estimations and confidence limits
of parameters in these cases, it is rather common nowadays to use resampling
methods (67). In MCR methods, it should be considered that rotation ambiguities
are simultaneously present and that both problems cannot be separated. For
brevity only one example of estimation of error propagation effects using Monte
Carlo simulations will be presented for the case of MCR solutions obtained using
the MCR-ALS method. See previous works for more details (67–69).

The data example chosen here for illustration is the spectrophotometric
titration of the polynucleotide poly(I)-poly(C). in the pH range between 2.0
and 8.1. UV absorption spectra were recorded from 240 to 320 nm, at every 1
nm. In the pH range studied, three acid-base species were identified. From the
concentration, C, and spectra profiles, ST, of the three species obtained in the
investigation of this system, the data matrix Dsim was generated, Dsim = C ST.
Due to the selectivity of the system at the beginning and end of the titration, using
appropriate initial estimates, MCR-ALS analysis of the data matrix, Dsim, with
non-negativity and closure constraints always converged to the same solution
without ambiguities. Random homoscedastic white noise matrices Nn, were
generated with zero mean and with values of their relative standard deviation at
four different levels (0.1%, 1%, 2%, and 5%) of the maximum intensity of the
measured signal in the data matrix Dsim. These noise matrices were then added
to the theoretical simulated data matrix Dsim giving Monte Carlo simulated data
matrices Mn, with a known amount of noise Mn = Dsim + Nn, where n indicates
0.1%, 1%, 2% and 5% noise levels. At each noise level (0.1%, 1%, 2% and 5%),
250 replicates were generated and analyzed by MCR-ALS under non-negativity
and closure constraints and, new estimates of the pure spectra and concentration
profiles of the resolved species for each one of the Mn replicate matrices were
obtained. From these resolved profiles, error estimates were obtained.

Concentration and spectra profiles resolved for theMonte Carlo data sets,Mn,
are shown in Figures 6 and 7, respectively. At the lower error levels, profiles were
notmuch distorted and error bandswere narrow. In Figure 6, concentration profiles
obtained at the higher error levels of 5% already showed distorted shapes, which
were rather different to the original profiles. At this error level of 5% also, only
the spectrum for the more acidic species was correctly recovered with a narrow
error band. The other two species spectra showed a much wider error band and
distorted shape (Figure 7).
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Figure 6. Results obtained at several error levels by Monte Carlo simulations.
Mean (solid line), maximum and minimum (dashed lines) concentration band
profiles (a) at 0.1%; (b) at 1.0%; (c) at 2.0%; (d) at 5.0% (reproduced from

Jaumot, J.; Gargallo, R.; Tauler, R. J. Chemom. 2004, 18, 327–340).

Figure 7. Results obtained at several error levels by Monte Carlo simulations.
Mean (solid line), maximum and minimum (dashed lines) spectra band profiles
(a) at 0.1%; (b) at 1.0%; (c) at 2.0%; (d) at 5.0% (reproduced from Jaumot, J.;

Gargallo, R.; Tauler, R. J. Chemom. 2004, 18, 327–340).

At high noise levels, due to the high overlapping of the species spectra, and
to the fact that selectivity and local rank constraints were not applied explicitly
during MCR-ALS resolution, noise propagation effects and rotation ambiguity
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effects appeared intermixed. Increasing rotation ambiguity band happens with
increasing noise levels. In order to further check for noise propagation and rotation
ambiguity effects and to discern among them at different noise levels, the accuracy
and recovery of the profiles can be evaluated by means of the calculation of their
dissimilarity with the true ones (known in this simulated data case). Dissimilarity
is measured by the sine of the angle between two profiles evaluated as:

where r2 is the squared correlation coefficient between these two vectors. When
the two profiles are different (correlation coefficient close to zero), the dissimilarity
is high. This magnitude evaluates the correct recovery of profiles, and therefore,
evaluates the effect of rotational ambiguities. Figure 8 shows the dissimilarities
calculated for the three resolved spectra profiles using Equation 16 at the different
investigated noise levels, except at 5% error, since they would obscure completely
the rest of the plot. At 0% and 0.1%, the accuracy in the profiles recovery is very
good, with dissimilarity values equal or below 0.001 in average, which represent
correlation coefficients close to the unity, i.e. no significant rotational ambiguity
was detected. At 1% noise level, spectra dissimilarities start being somewhat
different from zero, around 0.01 units (correlation coefficients still at the order of
0.9999). Rotation ambiguities are still very low if present and they do not produce
any significant distortion of profiles. In the case of 2% noise level, dissimilarities
are around 0.02 units (correlation coefficients around 0.9998). Results are still
very good and acceptable although rotation ambiguity effects start showing up.
It is at the 5% level, where rotation ambiguities appeared more importantly and
dissimilarity values showed a clear disagreement between estimated ALS values
and theoretical ones used for the data simulation.

Figure 8. Effect of noise propagation and rotational ambiguities on MCR
estimations at 0.1%, 1% and 2% noise levels. y left axis gives dissimilarities
(Equation 17). Y right axis gives the noise level of the simulations. x axis gives
simulation number (reproduced from Jaumot, J.; Gargallo, R.; Tauler, R. J.

Chemom. 2004, 18, 327–340).
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Taking into Account Error Propagation Uncertainties in MCR Estimations

MCR methods assume that the dataset error structure is independent and
identically distributed, i.i.d, noise. Although this assumption is not general,
since heteroscedastic and correlated error structures exist and they can influence
significantly the results obtained (70), MCR-ALS results are usually considered
good approximations of the true results if the noise structure is unknown and
error sources are not very high and disparate. Recently, Multivariate Curve
Resolution Weighted Alternating Least Squares (MCR-WALS), and the use
of Maximum Likelihood Principal Component Analysis MLPCA as initial
projection step before ALS, have been proposed for the analysis of datasets where
noise structure is known and relatively high non-homoscedastic error sources
are present in the investigated datasets (71–75). In all these cases, MCR-WALS
or MLPCA+MCR-ALS results were better than those obtained when applying
ordinary MCR-ALS (ALS without considering the data error structure). The main
aim of MCR-WALS is to work on the space of solutions having a minimum error
contribution. MLPCA also attempts to solve the same problem, although the use
of these algorithms requires a previous good knowledge of data error structure,
which unfortunately is seldom possible. The use of MLPCA preliminary subspace
projection of the data matrix has the advantage versus MCR-WALS of an easier
application and generalization of previously developed Multivariate Curve
Resolution methods. See previous references (72–75) for more details.

5. New Application Domains
With the new advancements in MCR-ALS method, its application arena has

increased enormously covering datasets of different structures and complexities
as diverse as , -omics data (76–78), environmental data (79–82), or hyperspectral
imaging data, to mention a few. Next, some of these examples are briefly
described.

Metabolomics Studies (76, 77)

In the first work (76), liquid chromatography mass spectrometry (LC–MS)
profiling experiments were performed to investigate metabolic changes in S.
cerevisiae yeast culture samples at different temperatures (30° and 42 ºC), to
differentiate between them and to find possible biomarkers of temperature stress.
MCR-ALS was applied to full scan LC–MS preprocessed data multisets, arranged
in selected time window augmented column-wise data matrices which include
control (30°C) and temperature stressed (42°C) yeast samples. The working
workflow is displayed in Figure 9. MCR-ALS resolved high-resolution accurate
MS spectra were used to identify possible metabolite structures by comparison
with MS spectra entries in metabolite databases. At the same time, statistically
significant changes in MCR-ALS chromatographic peak areas of metabolites
in control and stressed yeast samples, were used to detect possible markers
of metabolism changes caused by temperature. PLS-DA-VIP scores analysis
(86) was used for this purpose. The proposed strategy allowed simplifying
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considerably biochemical interpretation of LC–MS metabolomics detected
changes and allowed the uncovering of new targets for discovery (biomarkers).

Figure 9. Schematic representation of the workflow following untargeted
(LC-MS) data generation. The workflow involved experimental analysis, data
pre-processing and data analysis in order to identify possible biomarkers (yeast
metabolites), reproduced from Farres M.; Piña B.; Tauler R. Metabolomics 2015,

11, 210–224.

In another recent work (77), the application of MCR-ALS to untargeted
UHPLC– TOF-MS lipid profiles analysis of a human placental choriocarcinoma
cell line (JEG-3) exposed to different xenobiotics is described. MCR-ALS
was applied to the column-wise augmented data matrices of 20 distinct
chromatographic windows of UHPLC–TOF-MS data of the different cell
samples, including treated and control samples. Application of MCR-ALS on
this UHPLC–TOF-MS lipidomic augmented data matrices allowed the resolution
of a large number of coeluted chromatographic peaks, the calculation of their
respective peak areas and the resolution of their corresponding pure mass spectra.
A total number of 86 MCR-ALS components were successfully resolved, and
the peak areas of the elution profiles of untreated (control) and treated cell line
samples were statistically compared.

Peak areas of the resolved elution (concentration) profiles showed distinct
responses for the lipids of exposed versus control cells, evidencing a lipidome
disruption attributed to the presence of the investigated xenobiotics. Results
from one-way ANOVA followed by a multiple comparisons test and from
partial least squares discriminant analysis (PLS-DA) were compared as usual
strategies for the determination of potential biomarkers. The combination of
the results of both strategies gave rise to a total of 33 lipids showing significant
differences between control and treated sampless. Identification of 24 out of the
33 potential biomarkers was positively achieved, using the resolved pure MS
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spectra from MCR-ALS analysis together with the high mass accuracy of the
TOF analyzer. The untargeted methodology proposed in this study noticeably
simplifies the interpretation of the lipidome, exclusively focusing the attention
on lipids showing important differences among normal (control samples) and
stressing (xenobiotic treated samples) conditions. Overall, this study proposes an
innovative untargeted LC–MS MCR-ALS approach (Figure 10) valid for most of
the MS -omic sciences, and being extended at present with new research work.

Environmental Studies (81, 82)

A recent example showing the capabilities of MCR-ALS method with
non-negativity and a new recently implemented quadrilinear constraint is shown in
reference (82). In this work a very large multidimensional dataset is summarized
and resolved with four way/mode component profiles (see Figure 11). The
four-way/mode data set was obtained in a long term environmental monitoring
study (15 sampling sites × 9 variables × 12 months × 7 years) belonging to
the polluted Yamuna river of India. MCR-ALS resolved pollution profiles
described appropriately the major observed changes on pH, organic pollution,
bacteriological pollution and temperature, along with their spatial and temporal
distribution patterns for the studied stretch of Yamuna River. Results obtained by
MCR-ALS were also compared with those obtained by other multi-way methods,
like PARAFAC. The implemented method and strategy are completely general
and can be used for the analysis of other multi-way data sets obtained in extensive
environmental monitoring studies of different type and compartments (air, water,
solid, etc.), over large geographical areas and during different time periods
(daily, weekly, monthly, yearly), as well as and in other similar high dimensional
(multiway, multimode) mixture analysis problems. See reference (82) for more
details about this work.

The implementation of the multilinearity constraints and interactions for
multiway data sets in the MCR-ALS method was proposed for the investigation
of the temporal distribution of the pollution by nitric oxide (NO) and ozone
(O3) in a city sampling station (urban center of Barcelona. Catalonia, Spain),
during the years 2000–2006 (81). Different specific studies were performed
considering the annual and pluriannual contamination by these two contaminants,
individually or in combination using different data matrix augmentation strategies
and multiway and multiset data analysis models (Figure 12). The MCR-ALS
method with appropriate constraints could successfully extract the different
patterns of daily, hourly and annual profiles summarizing the main contamination
processes. Interpretation of these patterns describe in detail the ozone-nitric oxide
atmospheric contamination time evolution and situation in the specific city site
under investigation. MCR-ALS with different constraints like trilinearity and
component interaction produced results analogous to well-established methods
like PARAFAC and restricted TUCKER3 model-based methods in the analysis
of environmental multiway data sets. The extension of MCR-ALS method to
multiset data analysis using different constraints like non-negativity, trilinearity
and interaction among components is shown to provide a powerful method to
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improve the interpretability of the different contamination patterns in atmospheric
and other environmental contamination problems.

Figure 10. Scheme of the steps of the untargeted LC-MS MCR-ALS strategy
proposed for the analysis of lipid profiles and determination of potential

biomarkers of lipid disruption by different xenobiotic compounds. Reproduced
from Gorrochategui E., Casas J.; Porte C.; Lacorte S.; Tauler R. Anal. Chim

Acta 2015, 854 20–33.
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Figure 11. Implementation of the quadrilinear model constraint in MCR-ALS;
and profiles resolved by 4 component MCR-ALS with quadrilinearity and

non-negativity constraints: (Y) variable mode; (W) year mode; (X) sites mode;
and (Z) month mode. Reproduced from Malik A.; Tauler R. Anal. Chim. Acta,

2013, 794, 20–28.

Hyperspectral Imaging (83–85)

Hyperspectral image data sets are an extension of traditional spectral data
adding the spatial dimension. Although traditionally hyperspectral images of
a sample are visualized as three-dimensional data cubes (2D pixels by spectral
wavelength), the cube structure does not reflect the mathematical behavior of
these data sets. In fact, two of the data dimensions are only markers of the spatial
position of the pixels under consideration and to be treated adequately, the image
cube should be unfolded to provide a data table containing the spectra of all pixels
each as a separate row. Therefore, it should be considered a two-dimensional
(two- way or two-mode) data set. In this context, it has no sense to consider
the image data set as a cube following a trilinear model and the ordinary MCR
bilinear model should be used instead. As recent examples of application of the
MCR-ALS method to hyperspectral images, two examples will be briefly shown
taken from recently published works (83, 84).

In the first work (83), a new data processing strategy is proposed to increase
the natural spatial detail present in the acquired raw hyperspectral images provided
by the image acquisition systems. The strategy proposed consists of a proper
design in the acquisition of series of hyperspectral images with a small motion
step among them, as small as the pixel size desired, combined with the appropriate
MCR-ALS image multiset analysis and a super-resolution post-processing
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strategy. The data treatment includes the application of multivariate curve
resolution (unmixing) multiset analysis to a set of multiple collected images to
obtain distribution maps and spectral signatures of the sample constituents. These
sets of maps are noise-filtered and compound-specific representations of all the
relevant information in the pixel space and decrease the dimensionality of the
original image from hundreds of spectral channels to few sets of maps, one per
sample constituent or element. The information in each compound-specific set of
maps is combined via a super-resolution post-processing algorithm, which takes
into account the shifting, decimation, and point spread function of the instrument
to reconstruct a single map per sample constituent with much higher spatial
detail than that of the original image measurement. This strategy overcomes
the problem of computation time that could arise if sets of raw hyperspectral
images at hundreds or thousands of spectral channels had to be processed
individually and provides better results, expressed as detailed noise-filtered maps
with constituent-specific information. This approach was tested on IR images
collected on a HeLa cell (Figure 13).

Figure 12. MCR-ALS profiles for three components using non-negativity
(continuous line) and non-negativity and trilinearity constraints (dotted line) for
column-row-wise augmented data matrices of NO and O3: a–c daily (within
a year); d–f hourly (within a day) and g–h yearly profiles (between years).
Reproduced from Alier M.; Felipe M.; Hernández I.: Tauler R. Anal Bioanal

Chem 2011 399, 2015-29.
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Figure 13. MCR-ALS results of a multiset analysis of low-spatial-resolution HeLa
cell images combined with a postprocessing super-resolution step. Top plots: sets
of 36 low resolution distribution maps of the nucleus, membrane, and cytoplasm.
Central plots: superesolved maps obtained by postprocessing combining sets of
low-resolution distribution maps. Bottom plots: resolved spectral signatures
for each cell component. Adapted from Piqueras S.; Duponchel L.; Offroy M.;

Jamme F.; Tauler R.; de Juan A. Anal Chem 2013, 85, 6303-6311.

After acquiring the raw spectra of 36 low-resolution images of a single HeLa
cell (with a pixel size of 3.6 μm and shifted 0.6 μm in the x- and/or y- direction
from one another), the Asymmetric Least Squares (AsLS (87)) was applied
to the raw spectra to remove the Mie scattering effect. After Mie scattering
correction by AsLS, the spectral ranges between 1300 and 1700 cm–1 and
2800–3400 cm–1 were selected for resolution analysis. SVD analysis indicated
the presence of three contributions on the Mie corrected data for the multiset
of low-spatial-resolution images of the HeLa cell. MCR-ALS analysis using
SIMPLISMA (10) to obtain initial estimates of pure spectra was performed under
the constraints of non-negativity in concentration profiles and spectra and with
spectra normalization in matrix ST. The final results of distribution maps and
pure spectra from the multiset analysis of low spatial resolution images of HeLa
cell clearly represent the different cell regions: nucleus, cellular membrane,
and cytoplasm. Spectral signatures were obtained directly from MCR-ALS
analysis. The super-resolution postprocessing applied to each of the three sets of
36 low-resolution distribution maps (with pixel size of 3.5 μm) provided three
superesolved maps with a pixel size equal to the motion step among images, 0.6
μm.
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Another interesting type of hyperspectral imaging datasets are obtained by
remote sensing satellites or airplanes. A last example of application is shown
(84) where the spectra signatures of the constituents present in the remote
sensing spectroscopic images, obtained by the Airborn Visible/Infrared Imaging
Spectrometer (AVIRIS), and their concentration distribution at a pixel level were
estimated by MCR-ALS. Results obtained by MCR-ALS were in general similar
to those obtained by other methods used in this field like Minimum Volume
Simplex Analysis (MVSA) and Vertex Component Analysis (VCA) methods
(88), except for cases where the latter method produce spectra and concentration
profiles with negative values, which were not feasible from a physical point of
view and according to the desired constraints of the sought solutions. MCR-ALS
results were evaluated for the presence of rotational ambiguities using the
MCR-BANDS method. The obtained results confirmed that the MCR-ALS
method can be successfully used for remote sensing hyperspectral image
resolution purposes (Figure 14). However, the amount of rotation ambiguity
still present in the solutions obtained by this and other resolution methods (like
VCA or MVSA) still are large and it should be evaluated with care, trying to
reduce its effects by selecting the more appropriate constraints. MCR-BANDS
(53, 64) results suggest that the extent of rotation ambiguity associated with the
MCR-ALS resolved profiles can be rather high and that the correct solutions can
only be guaranteed if additional constraints are applied, such as those providing
information about the local rank properties of the image, i.e., about the presence
or absence of the different components in the image pixels.

Figure 14. MCR-ALS strategy for the resolution of spectra (signatures) and
of 2D image concentrations of the pure components. In the remote sensing
image obtained by Airborne Visible Infrared Imaging Spectrometer (AVIRIS).
Reproduced from Zhang X.; Tauler R. Anal Chim. Acta, 2013, 762, 25–38.
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6. Bruce Kowalski and MCR (Figure 15)

Bruce Kowalski was always interested in curve resolution methods; in fact
the term ‘multivariate curve resolution’ was already used in his publications of
1984 with Osten D.W. (88) and in 1985 with Borgen O.S. (2). Until then, the
more used term had been ‘self-modelling curve resolution’ initially proposed
by Lawton and Sylvestre (1, 13). There were of course other terms used for
analogous purposes such as mixture analysis (4, 10) or factor analysis (8, 12,
89). Bruce was recommending the use of the term ‘multivariate curve resolution’
in analogy to other family of methods in chemometrics such as ‘multivariate
calibration’ methods. Bruce was always well aware of the ubiquitous rotation
ambiguity problems associated to all bilinear data decompositions, such as
those performed in curve resolution of two-way data sets (data tables, data
matrices). Bruce was pushing to higher-order data (data cubes, multiway data),
where all these ambiguities could be eliminated, for instance using generalized
rank annihilation (5) or multilinear model based methods. In 1992, during a
research visit to the Center for Process Analytical Chemistry of the University
of Washington, in Seattle, I was fortunate to work with Bruce, his PhD students,
and other visiting scientists of his Chemometrics Laboratory. In the frequent
research group meetings we had, the main topic of discussion was the extension
of multivariate calibration methods to multiway data (to higher order data, in
Bruce’s preferred notation (90)). As a result of these new developments, and as
a consequence of my previous research activity in the study of multiequilibria
and multispeciation systems using spectroscopic methods using (evolving) factor
analysis soft modelling methods (91), we extended curve resolution methods to
the simultaneous analysis of multiple spectroscopic titrations of chemical reaction
systems (92), to the analysis of multiple runs of an industrial chemical process
monitored by spectroscopic probes (56), and to the development of spectroscopic
chemical sensors (93). All this preliminary work finished with the publication
of the seminal paper in 1995 about local rank, selectivity and multiway analysis,
using multivariate curve resolution methods (19), written in cooperation with
Age Smilde and Bruce Kowalski. This paper received more than 500 citations,
and it is still receiving a lot of attention at present. We established the basis of
modern curve resolution methods, describing how rotation ambiguities can be
solved, either using selectivity/local rank constraints, (which was simultaneously
proposed by Rolf Manne (16) in his resolution theorems), or with the extension of
MCR methods to multiset and multiway data, and implementation of trilinearity
and other multilinearity type of constraints (20, 21, 27, 29, 30, 35–38, 57, 75).

As we mentioned at the beginning of this chapter, and after a rather unsteady
development, MCR is reaching its mature state. It is clear from our point of view,
that a fundamental milestone in this development was due to the interaction of
the work performed by Bruce and co-workers, and of our research effort to find
new ways of analyzing chemical data, in particular by means of spectroscopic
methods. These synergies catapulted the development of MCR methods to the
investigation and application of new problems and challenges in Analytical
Chemistry and related fields. We have entitled this book chapter ‘Multivariate
Curve Resolution: a different way to examine chemical data’, because this is
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indeed the philosophy behind the development and application of MCR methods,
and this is the reason for its widespread use at present (94), as we have tried to
summarize in this chapter.

We want to finish this chapter with our sincere and vivid acknowledgment
to the work done by Bruce Kowalski in the promotion of the Chemometrics field
worldwide, and we are specially honored of having contributed under his initial
guidance, to the consolidation of one of its main subfields at present: Multivariate
Curve Resolution.

Figure 15. Bruce Kowalski and Romà Tauler (one of the authors of this Chapter)
in one of the breaks of the Xth Chemometrics in Analytical Chemistry meeting,
celebrated in Campinas, Brazil, in 2006 (Photograph taken by Susana Navea,

PhD student).
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Chapter 6

Applying Multivariate Curve Resolution to
Source Apportionment of the Atmospheric

Aerosol

Philip K. Hopke*

Institute for a Sustainable Environment and Department of Chemical and
Biomolecular Engineering, Clarkson University, Potsdam, New York 13699

*E-mail: phopke@clarkson.edu

A major application of chemometrics is the mixture resolution
problem. Ideally in a chemical analysis, all of the constituents
in a complex mixture are fully separated from one another so
that their identification and quantification are relatively simple
to achieve. However, in spite of advances in separation science,
such resolution of complex mixtures is often not possible. Thus,
it becomes necessary to separate overlapping components using
mathematical methods. A similar problem exists in atmospheric
science where it is useful to identify the sources giving rise
to the observed concentrations of chemical constituents in the
ambient aerosol and to quantitatively apportion the measured
particulate mass concentrations to those identified sources.
This process has come to be called Receptor Modeling and
various methods have been developed and applied over the past
40 years to provide source apportionments. This chapter will
outline these methods and their application to ambient particle
composition data.
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Introduction

One of the major applications of chemometrics is the mixture resolution
problem. Ideally in an analysis, all of the various constituents in a mixture are
fully separated from one another so that their identification and quantification
are relatively simple to achieve. However, in spite of significant advances
in separation science, such resolution of complex mixtures is often not
possible. Thus, it becomes necessary to separate overlapping components using
mathematical methods. The approach used to perform these analysis is called
Self-Modeling Curve Resolution (SMCR) (1, 2) and has been in use since around
1960. This approach has been widely applied to a variety of spectrochemical
data including vibrational spectroscopy (3) and a variety of complex physical
chemistry problems (4).

A similar problem exists in atmospheric science where it is useful to identify
the sources giving rise to the observed concentrations of chemical constituents in
the ambient aerosol and to quantitatively apportion the measured particulate mass
concentrations to those identified sources. This process has come to be called
ReceptorModeling and variousmethods have been developed and applied over the
past 40 years to provide source apportionments (5–10). This chapter will outline
these methods and their application to ambient particle composition data.

Airborne particulate matter is a complex mixture of materials from a
variety of sources including natural and anthropogenic. Some particles are
emitted directly into the atmosphere (primary) while others are formed through
atmospheric oxidative processes (secondary). Thus, sources need to be considered
in the context of a 2x2 matrix of human and natural versus primary and secondary.
Figure 1 provides a useful framework for considering particle origins (11). Most
of the coarse mode particles are primary in origin whereas most of the fine
mode particles are secondary. Particles larger than about 1 µm in aerodynamic
diameter are produced through mechanical processes such as tires rolling over
wet pavement or waves breaking on the shore and in the open ocean and throwing
droplets of water into the air. When the water evaporates, the material dissolved
in the water produces a particle. Fine particles (<1 µm in aerodynamic diameter)
come from chemical processes including combustion and atmospheric oxidation
such as the reaction of ozone with the terpenes emitted by coniferous trees to
form particles.

To effectively manage air quality, it is essential to identify the sources
that contribute pollutants to the observed concentrations and to apportion
the contributions of those sources to the observed values. Then air quality
management strategies can focus on those sources that are most important to the
air quality problems and effective and efficient control plans can be devised.

130

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

6

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 



Figure 1. Volume size distribution measured in traffic showing fine and coarse
particles and the nuclei and accumulation modes of the particles. (USEPA, 2004).

Mass Balance Principle

The fundamental principle of receptor modeling is that mass conservation can
be assumed and a mass balance analysis can be used to identify and apportion
sources of contaminants in the atmosphere. The approach to obtaining a data set
for receptor modeling is to determine a large number of chemical constituents such
as elemental concentrations in a number of samples. Alternatively, automated
electron microscopy can be used to characterize the composition and shape of
particles in a series of particle samples. In either case, a mass balance equation can
be written to account for all m chemical species in the n samples as contributions
from p independent sources.
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where xij is the jth chemical species concentration measured in the ith sample, fkj is
the gravimetric concentration of the jth species in material from the kth source, and
gik is the airborne mass concentration of material from the kth source contributing
to the ith sample.

This concept of a linear superposition of independent components is similar
to spectral deconvolutions based on independent contributions to the sample
absorbance in UV-Visible spectra of mixtures or the mass spectra of a gas
chromatographic peak of unresolved components. However, in the receptor
model problem, there are additional complications that make the resolution of
the components more difficult. In spectrochemical problems, the uncertainty in
the measurements are typically less than 1% whereas in the receptor modeling
problem, the errors are 5% to 10% for well measured variables and can range to
much higher values. Of more importance is the variability in the source profiles.
The spectrum of a particular compound is the same no matter where and when it
is measured. The only difference in the quality of that spectrum is the quality of
the spectrometer. However, the composition of particles emitted by a coal-fired
power plant depends on the nature of the mineral matter in that coal. Different
coals from different locations will have different mineral species laid down with
the carbonaceous material from which the coal has formed. Thus, as a plant burns
through a supply of coal, there will be a variable input of the various mineral
phases (12). In receptor modeling, it is thus necessary to account for both the
measurement error and the variability of the profile compositions. This problem is
exacerbated when the profile includes reactive species whose concentrations may
change as a result of oxidative processes in the atmosphere. These differences are
discussed in more detail by Hopke (13).

There exist a set of natural physical constraints on the system that must be
considered in developing any model for identifying and apportioning the sources
of airborne particle mass (14). The fundamental, natural physical constraints that
must be obeyed are:

1) The original data must be reproduced by the model; the model must
explain the observations.

2) The predicted source compositionsmust be non-negative; a source cannot
have a negative percentage of an element.

3) The predicted source contributions to the aerosol must all be
non-negative; a source cannot emit negative mass.

4) The sum of the predicted elemental mass contributions for each source
must be less than or equal to total measured mass for each element; the
whole is greater than or equal to the sum of its parts.

While developing and applying these models, it is necessary to keep these
constraints in mind in order to be certain of obtaining physically realistic solutions.
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Conceptual Framework

To solve the mass balance problem outlined in equation 1, there are several
approaches that can be taken. The simplest approach is if the profiles of the major
sources are known, and thus, the values of source profile matrix, F, are available.
Then equation 1 can be rewritten as

This equation now pertains to a single sample and since we are fitting a model
to the data, we have to consider the residual values, ej. The equation has now
become an ordinary least squares (OLS) problem with the vector x and matrix F
known and the vector of g values as the unknown coefficients to be estimated. This
basic framework for solving the mass balance problem was initially proposed by
Winchester and Nifong (15) and Miller et al. (16). Friedlander (17) introduced
an ordinary least-squares regression analysis but based on very few species and
called it a Chemical Element Balance (CEB).

Kowalczyk et al. (18) recognized that since there were not equal errors in
all of the dependent variables, OLS was inappropriate and an ordinary weighted
least squares (OWLS) fit was required to take the varying variances into account.
However, In 1979, both John Watson and Alan Dunker independently recognized
that the use of ordinary regression analysis was incorrect because source profiles
are measured with error. Thus, OWLS does not take into account the errors in the
independent variables. There are a number of ways to incorporate the errors in
the independent variables into the analysis (19). One approach termed effective
variance least squares (EVLS) incorporates the measurement error in the objective
function to solve the chemical mass balance (CMB) problem. The approach was
described by Cooper et al. (20) and was developed into software provided to the
receptor modeling community by the U.S. Environmental Protection Agency (21).
The key issue in the application of the CMB model is knowing the profiles. It
is difficult and expensive to perform emissions sampling and very few sources
other than motor vehicles have been examined in the past 15 years. Thus, many
of the profiles of stationary sources may be out of date. Very little is known
with respect to the variability in composition in the profiles for a given source
type. There continue to be measurements of emissions from mobile sources, but
even then there are relatively few measurements relative to the total number of
motor vehicles in various weight classes and engine types that are on the road. An
assessment of the utility of existing profiles relative to the ambient concentrations
of compounds that can serve as tracers for spark- and compression ignition vehicles
was presented by Subramanian et al. (22).
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Thus, alternative approaches that only utilize the ambient concentration data
have been developed in terms of multiple forms of factor analysis that are actually
trying to solve the self-modeling curve resolution or mixture resolution problem.
To solve this problem, it is necessary to solve equation (1) using multiple sample
data so that the model being fit is now given as:

where the residuals, eij, account for the part of the variation in the data than cannot
be fit to the model.

The first receptor modeling analyses reported in the literature were factor
analysis using eigenvector methods that had been developed in the social sciences
for interpreting large data sets. Blifford and Meeker (23) used a principal
component analysis with several types of axis rotations to examine particle
composition data collected by the National Air Sampling Network (NASN)
during 1957-61 in 30 U.S. cities. Prinz and Stratmann (24) examined both the
aromatic hydrocarbon content of the air in 12 West German cities and data on the
air quality of Detroit using factor analysis methods. In both cases, they found
solutions that yielded readily interpretable results. There was no further use of
factor analysis until it was reintroduced in the mid-1970’s by Hopke et al. (25)
and Gaarenstroom et al. (26) in their analyses of particle composition data from
Boston, MA and Tucson, AZ, respectively. A problem that exists with these forms
of factor analysis is that they do not permit quantitative source apportionment
of particle mass or of specific elemental concentrations. In an effort to find
alternative methods that would provide information on source contributions when
only the ambient particulate analytical results are available, other approaches were
employed. Hopke and coworkers used Target Transformation Factor Analysis
(27) originally developed by Malinowski (4). Henry and coworkers (28–31) have
developed alternative methods based on eigenvector methods. The initial model
was SAFER and it has evolved into Unmix (21). These concepts provide the
basis for a geometrical interpretation using “edges” as outlined by Henry (32).

Edges or End Members

The essence of SMCR or quantitative factor resolutions is the idea of edges
or end members (33). In the spectrochemical problem, they are often referred to
as pure spectra. They represent the relationships among the measured variables
that are characteristic of the specific source type being resolved. To illustrate
the idea, Figure 2 shows a plot of simulated data for a mixture of two crustal
materials with different iron to silicon ratios. The critical idea here is not to look
at a regression line showing the relationship between Fe and Si because there are
two such relationships represented by the two solid lines. Those lines bound all
of the measured values and then represent two new axes for the plot that represent
the amounts of each of the two types of materials in each mixture represented by
a point in the plot. The points show the relative amounts of Fe and Si relative to
the orthogonal x and y-axes, but the non-orthogonal axes represent the amounts
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of the source materials present when lines are dropped from a point to the two
solid lines. There are points along those two solid lines that represent samples that
contain only one of the two types of materials present in the samples. Thus, the
defining lines in the plot are those where the concentration of one source material
is zero.

Figure 2. Plot of simulated data for mixtures of two crustal materials with
different Fe/Si ratios.

These edge points or end member points then define the source profiles. For
spectra, it is possible to be sure we have a pure compound that we put into the
instrument tomake ameasurement and there are likely to be locations in the spectra
where the absorbance of all of compounds in the mixture are zero. It is them
possible to extract the pure spectra from the data (1, 34). However, in the receptor
modeling problem, there may be sources for which their contributions are never
zero. For example, is there a day when motor vehicle traffic is truly zero? Thus,
the solid lines in Figure 2 could represent minimum values within the data set,
but the true profiles could be the dashed lines. Using those lines as the new axes
will permit fitting the data as well as the solid lines. This uncertainty in the true
relationships among the variables is the rotational ambiguity that is a problem for
all forms of factor analysis. There are conditions that ensure a unique solution
(35), but these are rarely attained in real environmental data.

The critical question is whether there are a sufficient number of points in the
data set where the contributions of each source are sufficiently close to zero that the
edges are defined. In an attempt to have a higher probability of having a sufficient
number of edge points, large data sets are preferable. Analyses can be performed
on smaller data sets, but typically few sources can be resolved and often the profiles
are clearly a mixture of different sources. Thus, a key task for any factor analysis
approach is to accurately identify these edges and the ability to achieve this end
depends on the quality of the data set.
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Unmix

Introduction

Henry (32) outlined the conceptual framework of Unmix. It is designed to
identify the major sources contributing to a set of samples. It recognizes that
it will not resolve minor sources. Unmix uses the higher dimensional edges in
the data to define the additional constraints needed to find a unique solution to
the receptor model problem. However, it is then essential that the data set have
a sufficient number of edge points that the algorithm can find it. The starting
point for the analysis is a singular value decomposition of the uncentered but
scaled data matrix to reduce the dimensionality of the problem to the number
of causal factors that created the data. It is expected that these factors would be
independent sources or source types that have well defined source profiles. Unmix
finds the edges and uses them to calculate the vertices of the simplex, which are
then converted back to source compositions and contributions. The edge-finding
algorithm works in an arbitrary dimensional space and is described in Reference
(32). It has been developed into software that is available from the U.S. EPA
(21) and has been applied to a number of air quality data sets including airborne
PM (36–39), particle number size distribution (40) and semivolatile compounds
associated with airborne PM (41–45). Until the most recent version (V6), there
were limitations to the number of factors that could be extracted and it often could
not find an acceptable solution so it has not been widely used.

Illustrative Example

Lewis et al. (37) analyzed particulate matter with aerodynamic diameters
less than 2.5 µm (PM2.5) composition data collected in Phoenix, AZ. Daily,
integrated 24-h samples were collected on 37mm diameter Teflon and quartz filter
media for fine particle mass and species measurements using a dual fine particle
sequential sampler (DFPSS). The samples were collected during the time period
fromMarch 1995 through June 1998. A total of 981 samples was finally obtained.
Two energy dispersive X-ray spectrometers were used to produce the chemical
elemental concentration data; a custom-made machine from Lawrence Berkeley
Laboratories (LBL) and a commercially available one from Kevex (KEV). Both
XRF instruments employed multiple choices for secondary excitation and utilized
a helium atmosphere rather than vacuum in order to preserve volatile species.
The quartz filters collected with the DFPSS were analyzed by Sunset Laboratory,
Forest Grove, OR, USA using the thermal optical transmission technique (46).
This technique measured both OC and EC. Each sample was characterized by the
measured concentrations of the following4 6 chemical elements: Na, Mg, Al, Si,
P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb,
Sr, Y, Zr, Mo, Rh, Pd, Ag, Cd, Sn, Sb, Te, I, Cs, Ba, La, W, Au, Hg, Pb, organic
carbon (OC), and elemental carbon (EC). In addition, water soluble potassium,
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Kw, was determined in water extracts of the samples as a marker species for
biomass combustion. Unmix cannot accept negative concentration data, all such
occurrences were replaced by half the minimum detection limit for that species.
While this was necessary for species with low concentrations or poor detection
limits, no replacements were needed for any of the species that were ultimately
used in the Unmix analysis. After data screening, 789 samples were used in the
Unmix analysis. These data were also used in the subsequent intercomparison of
receptor modeling methods described by Hopke et al. (5).

Figure 3 shows the plots for a subset of the measured constituents. In the
upper left pane, an edge (red dotted line) can be observed showing the relationship
between one factor (source) that is rich in Si and the amount of PM2.5. There
are also clearly sources of PM2.5 that are unrelated to Si. The upper right panel
shows that there is a single source of Si and Al that would typically be assigned
to be “soil.” In the lower panels, it can be seen that there are likely two sources of
material that include both Si and Ca and Fe, respectively, in their compositions.
The Fe relationship is strong enough that an edge can be assigned, but that is not
the case with Ca.

Figure 3. Plots of PM_Fine, Al, Ca, and Fe against Si for the Phoenix, AZ data
set. (see color insert)

Five profiles were derived for these data and they are presented in Table 1.
Since Unmix nominally provides a unique solution, error estimates can be obtained
using a bootstrapping technique that is built into the software.
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Table 1. Unmix-derived source profiles (weight-fraction) and 1-sigma uncertainties (37)

Crustal/Soil Gasoline Secondary Vegetative Burning Diesel

Si 0.0092 ± 0.1066 0.0075 ± 0.0113 0.0027 ± 0.0129 0.0087 ± 0.0269 0.0067 ± 0.0435

S 0.0056 ± 0.0316 0.0059 ± 0.0008 0.0077 ± 0.1361 0.0096 ± 0.0219 0.0075 ± 0.0118

K 0.0013 ± 0.0172 0.0013 ± 0.0004 0.0007 ± 0.0018 0.0078 ± 0.0386 0.0013 ± 0.0086

KW 0.0006 ± 0.0012 0.0005 ± 0.0021 0.0006 ± 0.0001 0.0078 ± 0.0345 0.0007 ± 0.002

Ca 0.0033 ± 0.0393 0.0026 ± 0.0033 0.001 ± 0.0037 0.0032 ± 0.0118 0.0025 ± 0.0186

Mn 0.0001 ± 0.0007 0.0001 ± 0 0.0000 ± 0.0001 0.0001 ± 0.0001 0.0003 ± 0.0021

Fe 0.0023 ± 0.0327 0.0015 ± 0.0072 0.0010 ± 0.0014 0.0033 ± 0.0048 0.0028 ± 0.032

OC 0.025 ± 0.214 0.028 ± 0.553 0.013 ± 0.326 0.037 ± 0.445 0.022 ± 0.309

EC 0.01 ± 0.034 0.017 ± 0.179 0.0091 ± 0.0072 0.016 ± 0.075 0.023 ± 0.204
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Crustal material accounted for 22 ± 2%of the averagemass concentrationwith
gasoline, diesel exhaust, secondary . and vegetative burning contributing 33
± 4%, 16 ± 2%, 19 ± 2%, and 10 ± 2%, respectively. The source strengths behave
as expected with the diesel contributions being lower on weekends compared to
weekdays and the ground level sources, diesel, gasoline, and agricultural burning,
being higher in winter compared to summer since dispersion conditions are poorer
in the winter. Sulfate was higher in the summer when there is more photochemical
activity to convert the emitted SO2 into . Nitrate was not measured in these
samples, and its absence will result in the mass partitioning into the resolved
sources being an overestimate of the true source contributions. Since particulate
nitrate is highest in the winter, this artifact will likely more strongly affect the
winter PM mass apportionment.

From these profiles, the contributions can be estimated for each sample. The
sum of the contributions can be compared to the measured mass concentrations
and an r2 value of 0.97 was obtained. Thus, the mass concentrations were well
described by the resulting 5 factor model, and the overall results were physically
realistic.

Limited SEM examination of filter samples from the field study indicated the
presence of additional sources (sea salt, copper smelter, iron foundry, fly ash) that
presumably did not contribute large amounts of PM mass to the samples (37). As
previously noted, the objective of Unmix is to identify and quantify the major
sources and these weaker sources would not be expected to be resolved.

Unmix and many self-modeling curve resolution methods have used
eigenvalue or singular value decompositions to obtain results. However, it is
important to note that eigenvector decomposition is actually an implicit least
squares fit that is minimizing the objective function as follows (4):

For virtually all environmental data, the uncertainties in the measured variables
are not uniform. In general, the errors scale with the measured values and thus, an
unweighted least squares for the factor analysis approaches is as inappropriate as
it was for the CMB approach.

Positive Matrix Factorization (PMF)

Introduction

An alternative approach is to explore the factor analysis problem as an explicit
least-squares problem. This concept applied to the receptor modeling problemwas
first presented by Paatero and Tapper (47, 48) and given that the solutions were
constrained to be non-negative, it was termed positivematrix factoriztion. It solves
the receptor modeling program outlined in Eq. 3 by minimizing the modified
objective function given by:
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where sij is an estimate of the uncertainty for the jth species in the ith sample. This
uncertainty is a combination of measurement error and the variability in the source
profile value. As has been discussed above, there is natural variability in the source
profile values given that it is not a fundamental property of the activity in the same
way that a spectrum is a fundamental property of a chemical compound.

The advantage of this approach is that it makes it easy to handle values that fall
below the detection limit (BDL) or that are missing. Eigenvalue methods cannot
easily handle BDL values. If the BDL values are replaced with a fixed fraction
of the detection limit (DL), then artificial correlations can be induced between
variables that both have a number of BDL values in the same samples. In PMF,
it is not a problem since the uncertainty can be made large enough to ensure that
there is no artifact correlations. BDL values are often considered “missing,” but
it is not the case. Something is known about the values in that they are small.
The exact value is not known but it is likely to fall between 0 and the DL. Thus,
a fixed fraction of the DL can be substituted for the BDL point and a sufficiently
large uncertainty can be assigned to allow it to properly influence the fit. Polissar
et al. (49) showed that even with up to 86% of the Cl values being BDL at one site
in Alaska, a good profile for sea salt could be obtained from the data since the Cl
was well measured on those occasions when there was a strong intrusion of marine
aerosol to the measurement sites.

For missing values, the ability to put in values with low weights in the fits
allows the replacement of some missing data. If there are no values available for a
given sampling period, then there is no bases to estimate them However, for many
monitoring programs, multiple filters are collected and analyzed to provide the
complete suite of chemical species that will be used in the source apportionment.
Suppose one filter is lost, but the others have been properly analyzed. Then the
missing values can be replaced with some central estimate of the distribution of
that variable, but at the same time, a very large uncertainty is assigned to the value
since nothing is known regarding the magnitude of the missing determination.

Based on these concepts, Polissar et al. (49) empirically explored many ways
to estimate the uncertainties and proposed one that has come to be widely used.
The approach has no underlying statistical theory, but rather is a practical set of
rules that has been found to work well in many applications. For well determined
values where there are reported measurement errors, the uncertainly is the sum
of the measurement error plus 0.5 times the DL. For BDL values, the species
concentration used in the PMF analysis is DL/2 and the uncertainty is assigned as
5/6 of the DL. For missing values, the median or geometric mean value is assigned
to the variable value and the uncertainty is 4 times that value (400% error).

Another advantage of the explicit least-square formulation is that it permits
easy incorporation of the natural constraints as well as any other constraints that are
known a priori. The application of such constraints has been the subject of recent
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work (50–52) and now has been incorporated into the latest version of EPA PMF
(V5.0.14) (21). These constraints help to reduce the degree of rotational ambiguity.
Extensive discussions of the problem of rotations are provided by Paatero et al.
(53) and Paatero and Hopke (54).

Finally, the least-squares formulation allows the development of other models
beyond the simple mass balance model outlined in Eq. 3. Examples of these more
complex models will be discussed below.

Illustrative Examples

PMF has also been applied to the Phoenix data set (5, 55, 56). These analyses
identified more sources including biomass burning, motor vehicles (with higher
contribution in winter), coal-fired power plants (secondary particles with higher
contributions in summer), soil, solid waste incinerator, and nonferrous smelting
processes so that PMFwas able to resolve minor sources that Unmix could not, but
that were observed in the SEM analyses (37). For the sources that were identified
by both methods, the mass apportionments were quite similar and both analyses
suffer from the lack of nitrate data.

To illustrate PMF, data from St. Louis, MO will be examined. St. Louis
is one of the few cities in the United States that still has large point sources of
particulate emissions. It has been the subject of receptor modeling studies going
back to the analyses of the Regional Air Pollution Study data collected in the mid-
1970s (57, 58). Subsequent studies were conducted (59), but the area remained in
non-attainment of the ambient air quality standards for particulate matter. In 2001,
the St. Louis – Midwest Supersite was established in East St. Louis, IL to conduct
intensive studies of the ambient aerosol in the area (60).

Daily PM2.5 samples were collected from June 2001 until May 2003 using
multiple sampling devices and analyzed for a suite of composition variables
including elements by XRF, ions by ion chromatography, and elemental and
organic carbon (EC/OC) using the IMPROVE protocol (46). Details of the
sampling and analyses are provided by Lee et al. (61). A total of 709 samples
and 33 species were used in the PMF analysis that produced 10 identified sources
including secondary sulfate, secondary nitrate, carbon-rich secondary sulfate,
soil, gasoline vehicles, diesel vehicles, and the 4 major point sources, a steel
mill, a primary lead smelter, a primary zinc smelter, and a copper products plant.
Figure 4 shows the source profiles derived from the data while Figure 5 presents
the time series of mass contributions of those identified sources.

A critical aspect of source apportionment analyses is to build evidence to
support the assignment of source names to the various derived factors and to assess
the quality of the results. There are several opportunities in these results. For the
soil profile, it can be seen that there is a very strong peak in early July 2002. Other
peaks are seen in the summers of 2001 and 2003. Soil is usually a weak source for
PM2.5 mass because wind blown or traffic resuspended soil typically has particle
sizes greater than 2.5 µm. To explore the nature of this 2002 peak, it is possible
to estimate the location of the air parcel backward in time using Lagrangian air
parcel back trajectory models like HYSPLIT (62). A trajectory arriving on July 1,
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2002 is shown in Figure 6. It can be seen that this event is related to the transport
of dust from the Sahara Desert that occurs during the summer (63).

Figure 4. Source profiles derived from the daily PM2.5 composition data from the
St. Louis-Midwest Supersite. Figure taken from Lee et al. (61).
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Figure 5. Source contributions derived from the daily PM2.5 composition data
from the St. Louis-Midwest Supersite. Figure taken from Lee et al. (61).
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Figure 6. Air parcel back trajectory from St Louis on July 1, 2002. (see color
insert)

PMF has now been used as a source apportionment tool in many airborne
PM composition studies from a variety of locations around the world [see (64)
and references therein]. It has been applied to VOC data (65), to Aerosol Mass
Spectrometry (AMS) data [(66, 67) and many others], and to particle number size
distributions [e.g., (68, 69)]. With the distribution of a version of PMF by the US
EPA (21), PMF is now being routinely applied to many air pollution data sets.

Another interesting feature is in the time series of contributions ascribed to the
lead smelter. It is the only primary lead smelter that was operating in the United
States at that time. It can be seen that there are higher contributions in 2001 than
for the rest of the measurements with smaller values during the first 4 months of
2002, followed by relatively low contributions from the rest of the measurement
period. The smelter had been required to install additional control technology to
be operational at the beginning of 2002. There were clearly some initial issues
with its operation, but by May 2002, it was operating properly and continued to do
so. Thus, the external information regarding the emissions from this facility agree
well with the receptor modeling results and support the analysis.

There are two additional monitoring sites in St. Louis, MO operated as part of
the US Environmental Protection Agency’s Chemical Speciation Network. One
of the sites is Blair Street site (38.6555 N, 90.1983W) in St. Louis City. The
Blair Street site is surrounded by several major interstate highways. The other site,
Arnold Street (38.4377 N, 90.3613W, 154m elevation) is in a suburban residential
area in Jefferson County. Samples at these sites were collected only every third
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day and were analyzed for the same set of chemical species but by a different set
of analytical facilities. These data were also analyzed with PMF (70).

Seven and nine sources were identified at the Blair and Arnold sites,
respectively, as compared with the ten identified at the Supersite. Several common
sources were identified at all three sites (Table 2). However, several of the major
sources were not resolved such as the zinc smelter and copper plan at Arnold St.,
and lead smelting and motor vehicles at Blair St. Part of these difference may
be attributable to the differences in the analytical data base as well as the greater
number of samples at the Supersite.

Table 2. Mean contributions to PM2.5 (Initiala vs constrainedb) presented
as µg/m3 (%)

Blair St. (BS) Arnold St. (AS) St. Louis Supersite (SS)

Constrained Initial Constrained Initial Constrained Initial

Sulfate 6.2 (38) 6.5 (40) 6.1 (39) 5.5 (36) 6.6 (37) 5.8 (33)

Nitrate 2.8 (17) 3.2 (20) 2.0 (13) 2.0 (13) 2.4 (13) 2.7 (15)

Zinc smelting 1.4 (9) 0.5 (3) 0.6 (4) 1.4 (8) 0.2 (1.3)

Copper
products 0.1 (1) 0.6 (3) 0.03 (0.2) 0.2 (1) 0.1 (0.5)

Diesel 0.7 (5) 0.4 (3) 0.8 (5) 0.7 (4) 0.4 (2)

Lead
smelting 0.4 (3) 0.4 (3) 0.5 (3) 0.6 (3) 0.2 (1)

Gasoline 2.6 (16) 2.9 (19) 3.2 (21) 1.3 (7) 2.9 (16)

Ca-rich 1.9 (12) 1.8 (12)

Soil 1.6 (10) 2.5 (15) 0.4 (3) 0.5 (3) 0.5 (3) 0.8 (4)

Biomass 0.5 (3) 0.4 (2)

Metal (Fe,
Cu, Zn) 0.4 (3)

Steel
processing 0.3 (2) 0.05 (0.

3) 0.6 (3) 1.2 (7)

Motor
vehicles
(total)

2.8 (17)

C-rich sulfate 3.4 (19) 3.5 (20)

a From Lee and Hopke (70); Lee et al. (61). b From Amato and Hopke (52).

Constrained Models

As mentioned above, adding constraints to the least square fitting process
can reduce the extent of rotational ambiguity. With PMF being applied through
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the use of the multilinear engine (71), it is possible to build constraints into the
model as was done in two studies where there was an effort to separate multiple
sources of similar composition (50, 51). Amato et al. (50) applied the multilinear
engine to data from an urban background site in Barcelona (Spain) to quantify the
contribution of road dust resuspension to PM10 and PM2.5 concentrations. A recent
emission profile of local resuspended road dust had been previously obtained (72).
This a priori information was introduced into the model as auxiliary terms in
the object function to be minimized by the implementation of so-called "pulling
equations" (54).

The multilinear engine permitted an enhanced solution when compared to
the basic unconstrained PMF results. The enhanced analysis identified road dust
source which accounted for 6.9 μg/m3 (17%) of PM10, 2.2 μg/m3 (8%) of PM2.5
and 0.3 μg/m3 (2%) of PM1 in addition to the other sources identified by in the
initial analysis. These results reveal that resuspension was responsible of the
37%, 15% and 3% of total traffic emissions, respectively, of PM10, PM2.5, and
PM1. Therefore, the overall traffic contribution resulted in 18 μg/m3 (46%) of
PM10, 14 μg/m3 (51%) of PM2.5 and 8 μg/m3 (48%) in PM1. In the onconstrained
solution, this mass explained by road dust resuspension was re-distributed among
the rest of sources, increasing mostly the mineral, secondary nitrate and aged sea
salt contributions.

Escrig et al. (51) applied a similar approach to speciated PM10 data
obtained at three air quality monitoring sites between 2002 and 2007 in a highly
industrialized area in Spain. The source apportionment of PM in this area is
an especially difficult task. There are industrial mineral dust emissions that
need to be separately quantified from the natural sources of mineral PM. On the
other hand, the diversity of industrial processes in the area results in a puzzling
industrial emissions scenario. The availability of specific source profiles for
particular major industrial emissions permitted the resolution of the industrial
emissions from other sources providing an opportunity to quantitatively evaluate
the effectiveness of abatement programs for regional air quality improvement.

Amato and Hopke (52) have applied constraints to combine the analysis of
the three sites in the St. Louis area into a single analysis such that known source
profiles could be worked into the analysis. To obtain good target profiles for
major sources derived from data independent from the particle composition data
collected at each of the three sites, additional high time-resolution data collected
as part of the St. Louis - Midwest Supersite study was employed. Organic and
elemental carbon concentrationsweremeasured hourly using a Sunset fieldOC/EC
system (73). Elements weremeasured using a semi-continuous elements in aerosol
system (SEAS) described by Kidwell and Ondov (74, 75) (2001, 2004). Briefly,
the method uses condensational growth by direct steam injection to grow particles
as small as 0.084mm thereby delivering a particle slurry that is suitable for analysis
by multi-element graphite furnace atomic absorption spectrometry. The SEAS
samples were analyzed for eleven elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se,
and Zn) by graphite furnace atomic absorption spectrometry. A particle-into-liquid
system (PILS) (76) was used to collect PM2.5 samples and analyze them for sulfate,
nitrate, sodium, potassium, and ammonium ions. Applying PMF to these data
permitted identifying factor profiles of the copper products plant, the zinc smelter

146

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

6

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 



and the steel mill factor. Average tailpipe emissions profiles were available from
Schauer et al. (77). These profiles were taken as targets and introduced in the ME
continuation run with the aim of extend the number of sources found.

For the cases where the metallurgic factors were found by in the original
studies (61, 70), the pulling equations permitted improvements in the source
profiles and therefore better impact estimates of their contributions. These new
contributions were in better agreement with the location of point source and
receptors. For example, at Blair St, zinc and copper metallurgy contributed in
proportion relative to the resolved contributions at the Supersite (1.4 µg/m3 and
0.1 µg/m3, respectively). The initial analysis attributed higher zinc emissions at
Blair St than at the Supersite, which is located closer to and more downwind of
the zinc smelter. Copper emissions were also overestimated in the initial analyses
(70), exceeding those at the Supersite by a factor of 6. In addition, contributions
from steel mill and lead smelter could be estimated at those sites where the
previous studies could not. Gasoline and diesel emissions were separated at
Blair St, with the diesel contributions being higher (similarly to the the Supersite
results) than at Arnold St, while initially the opposite was observed, with no
estimate of diesel emission impacts at Blair St. Additional features could be
observed with respect to the sources that were now identified. The metallurgic
factors at the Arnold and Blair St sites are in good agreement with the position of
the point sources. Gasoline and diesel factors were obtained at Blair St. A better
resolved factor (Ca-rich factor at Arnold St) shows directionality to the southeast
where a cement plant is located in the same direction as the lead smelter.

Constraints have shown to be of sufficient value that they have now been
incorporated into the US EPA version of PMF in version 5.0.14 (21). Using
them requires a multiple step analysis in which an initial solution is obtained and
then constraints applied to the continuation run. Details of how to perform such
analyses are provided in the user’s manual (78).

Complex Models

Expanded Model: Other approaches to reduce the rotational ambiguity
and increase the number of sources resolved have been developed. Paatero and
Hopke (79) first introduced the concept of solving parallel equations in which
the second equation can take into account other drivers of variation such as wind
speed and direction, day of week, seasonality, etc. Airborne concentrations due
to specific sources may display a sharp directional pattern with respect to wind
wind directions. In these cases, concentrations are high when the air arrives from
certain direction(s) while concentrations associated with other directions are low
or nil. Such non-linear dependency cannot be directly modeled so that wind
information would be included in a factor analytic model as one or a few special
variables, used in parallel with the ordinary variables, the concentrations. There
may be other similar kinds of effects such as weekend/weekday activity patterns,
time of day, time during the year, etc. that significantly affect the observed
elemental concentrations. The non-linear variables can be included in the model
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as independent or free variables. This incorporation of a secondary equation has
been terms an expanded factor analysis model (80).

In the expanded ME analysis, the bilinear model shown in Eq. (3) is
augmented by additional complex equation that contains modeling information.
The most basic form of the this equation is

where D and V represent matrices, consisting of unknown values to be estimated
during the model fitting process. The known index value δi and νi indicate wind
direction and wind speed of the ith day for the kth source, respectively. The indices
are shown in parentheses, not as subscripts for the typographic reasons. In this
model, the index value δi is obtained from the classification of the wind direction
on the ith day into a set of indices. For example, 18 indices could used to represent
20º wind direction sectors, Then if the actual wind direction was 170º, the value
of δi would be 7 (80).

In Eq. (6), other information on the sources of variation in the concentration
that might aid the separation of the sources can be incorporated. For example,
Kim et al. (80) used wind direction, wind speed, time of day, time of year, and
weekend/weekday were used. For the wind direction and wind speed, hourly
averaged values were used. The complete expanded model consists of the basic
bilinear equation and a multilinear equation specifying the physical model:

where S(ηi,k) is the element of matrix S with the index values ηi corresponding
to the time-of-year classification of the ith day for the kth source. Time-of-year is
classified into six two-month periods (or seasons). W(ωi,k) is an element of the
matrix W with the index values ωi corresponding to weekend/weekday factor of
the ith day for the kth source. The weekend effect matrixW has dimension 1 by p.
Often, the weekday coefficients have been fixed at unity so that only the weekend
coefficients are variable. The elements of matrixW specify the average strength of
each factor on weekend relative to the strength in weekday. D(δih,k) is the element
of matrix D with the index values δih for the wind direction during hour h of the
ith day for the kth source. V(νih,k) is the element of matrix V with the index values
νih for the wind speed during hour h of the ith day for the kth source. R(εih,k) is
the element of matrix R with the index values εih for the calm wind (< 1 m/sec)
during hour h of the ith day for the kth source. Because of isotropic wind direction,
calm wind was separated as an separate matrix R in this analysis instead of being
included in the wind speed index matrix V. Also, the wind direction of calm wind
was not incorporated in the wind direction index matrix D. T(λih,k) is the element
of matrixTwith the index values λih for the time-of-day during hour h of the ith day
for the kth source. Thematrices, S,W,D,V,R, andT contain unknown values to be
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estimated in the fitting process. The specific factor elements used to fit a particular
data point are selected based on the hourly or daily values of the corresponding
auxiliary variables. Therefore, these auxiliary variables are not fitted, but served
to determine the indices of the values to be fitted.

ME provides a solution that minimizes the value ofQ, based upon uncertainty
estimates for each observation [] while the values of the unknown matrices G, F,
S, W, D, V, R, and T are to be determined so that the model fits the data as well
as possible. The Q value is defined as:

where σij is an uncertainty estimate for the bilinear model and σ′ij is an uncertainty
estimate for the multilinear model in Equation 6 in the jth element measured in the
ith day.

Equation 7 is one of multiple possible models depending on the understanding
of the system under study while the mass balance in the bilinear equation should
always be applicable. Because the variability of the index factors is restricted
by the model, Eq. 7 will produce a significantly poorer fit to the data than the
bilinear equation (Eq. 3). Therefore, the uncertainty estimates corresponding to
the multilinear equation must be larger than those corresponding to the bilinear
equation to decrease the weight of the multilinear equation in the solution. In prior
studies, experiments have been performed with different uncertainties resulting
in estimated uncertainties in the multilinear equation being set at nine times the
estimated uncertainties of the bilinear equation (80).

This approach has been applied to data from Atlanta (80), Washington, DC
(81), New York City (82), and Cleveland (83) with mixed results. In Atlanta
and Washingon, the expanded model clearly permitted more sources to be better
resolved. However, in NYC and Cleveland, there were little differences between
the conventional PMF solution and the expanded model results. It is not yet clear
why some locations seem to be more amenable to the expanded model and some
are not. Further work is required to better understand its applicability.

Other Complex Models: An advantage of the explicit least squares
formulations such as PMF is that conceptual models can be built and tested based
on the nature of the processes underlying the creation of the data set. A number
of such models have been developed to maximize the information recovery from
the collected data sets.

Multiple Sample Type Data: In many panel studies of the effects of airborne
particles on health, measurements are made in multiple environments. For
example, Hopke et al. (84) report on the analysis of elderly subjects living in
a single multifamily residence. Measurements were made at a central outdoor
site, an unoccupied room in the building and using personal samplers on specific
individuals. Thus, different sources will affect different sample types. Only
“external” sources of ambient particles will affect the outdoor samples. However,
ambient particles will penetrate into indoor air and add to the exposure observed
in the indoor and personal samples. Indoor sources such as cooking and the use
of personal care products will not affect the outdoor samples.
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The expanded receptor model for this study can be expressed as:

where i is the individual (subject or participant) index, j is the species index, d is
the sampling date index, t is the type index, N is the number of external sources,
H is the number of internal sources. xijdt denotes the concentration of species j in
the sample of type t collected by subject i on date d, gipdt denotes the contribution
of source p to the sample of type t collected by subject i on date d, fjp denotes the
relative concentration of species j in source p.

This model has been used to analyze data for cardiac patients in the Raleigh-
Chapel Hill area of North Carolina (85) and of data for asthmatic children attending
a special school for moderate to severe asthmatics in Denver (86). In the case of the
Denver study, four external sources and three internal sources were resolved from
the PM2.5 data for the three different environments. Secondary nitrate and motor
vehicle emissions were the two largest external sources in this study. Cooking
was the largest internal source. A significant influence of indoor tobacco smoking
on daily personal exposures to particles was observed for those houses in which
smokers reside and the environmental tobacco smoke contribution correlated with
urinary cotinine levels in these urban schoolchildren. The influence of the high
traffic flow outside the school on the indoor air quality was also observed.

Time Synchronization Model: One of the major developments in atmospheric
monitoring over the past 15 years has been the deployment of more real-time and
near real-time instruments. However, these instruments collect data at different
frequencies ranging from a few minutes to a few hours. Higher frequency data
have the advantage that transient events can be observed that can often provide
edge points that would otherwise be averaged out of a longer interval sample (87).
Thus, it is not desirable to average the higher frequency data to the longer time
interval instrument data in the suite of data. There is no way to split the longer
integration time data down to the shorter time intervals so it is necessary to have
models that permit each set of data to be included within its own measurement
frequency. Such models have been applied to several of the sets of data from the
US EPA’s Supersite program. Zhou et al. (88) analyzed data from Pittsburgh, PA
while Ogulei et al. (89) used the same model for data from Baltimore, MD. The
model has been examined further using simulated data (90) and found that the
model performed well.

Multiway Data: The vast majority of applications of SMCR are to matrices
that provide information on chemical properties of a series of samples. However,
there is also the potential for data with increased dimensionality. For example, if
particles are segregated by aerodynamic diameter into multiple samples collected
during a given time interval that are then analyzed for their chemical composition,
the data set is then a 3-way array or tensor consisting of size, composition, and
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time period. Data for a single variable like PM2.5 mass concentrations could
be collected from multiple sites across an area so that the three-ways would be
latitude, longitude, and concentration. If those samples were then analyzed for
composition, there would then be a 4-way array. Various such applications of
PMF have been made and demonstrate how conceptual models can be built to fit
the data rather than all data be fit to the same bilinear model.

Spatially Distributed Data: Paatero et al. (91) examined a spatial data set
of PM2.5 mass concentrations measured every third day at over 300 locations
in the eastern United States during 2000. The basic PMF model was enhanced
by modeling the dependence of PM2.5 concentrations on temperature, humidity,
pressure, ozone concentrations, and wind velocity vectors. The model comprises
12 general factors, augmented by 5 urban-only factors intended to represent excess
concentration present in urban locations only. The flux density maps showed
the major transport patterns of PM2.5. For example, they show the increase in
particle mass as the air moves from the regions of the gaseous precursor (SO2)
and is converted in sulfate. Recognition of this combination of transport and
transformation is necessary in order that control procedures can be targeted to
significant causes of high PM2.5 concentrations.

A different spatial model was developed by Chuienta et al. (92) for the
analysis of the spatial patterns and possible sources affecting haze and its visual
effects in the southwestern United States. The data are from the Measurement
of Haze and Visual Effects (MOHAVE) project thate were collected during the
late winter and midsummer of 1992 at the monitoring sites in four states (i.e.,
California, Arizona, Nevada and Utah). The resulting three-way data array was
analyzed by a four product-term model. This study makes a direct effort to include
wind patterns as a component in the model in order to obtain the information of
the spatial patterns of source contributions. The solution is computed using the
conjugate gradient algorithm with applied non-negativity constraints. For the
winter data set, reasonable solutions contained six sources and six wind patterns.
The analysis of summer data required seven sources and seven wind patterns.

Size-Composition-Time Data: There are a number of devices that can
separate particles by size such that samples can be collected that represent a
relatively limited particle size range. The most common of these systems is a
cascade impactor in which particles are sequentially separated and collected for
analysis. Most of these systems are manually operated so there is considerable
effort involved in collecting a series of samples. However, there have been several
systems developed for collecting a time-series of time- and size-resolved samples
that can then be analyzed. One of these systems is the rotating DRUM impactor
sampler (93) that collects the particles on Mylar films placed on a rotating drum
under the nozzle that determines the aerodynamic behavior of the particles. The
resulting samples can be analyzed using synchrotron XRF (94) to provide the
3-way data set.

Different sources have different size-composition profiles in their emissions
(95). Thus, a source profile for size segregated data is a matrix of composition as a
function of size and therefore, a special model is required to properly account for
the processes by which the particles are formed and emitted into the atmosphere.
The main equation of the model is as follows:
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where is the three-way array of observed data, ⊗ represents a Kroneker
product (96, 97) of the source profile array with the contribution matrix,
A(I,P), P is the number of factors, and is the three-way array of residuals.

This model has been applied to several data sets including three-stage
DRUM impactor data from Detroit, MI with the samples collected between
February and April 2002 (98) and eight-stage DRUM impactor data from the
Washington-Dulles International Airport (99). For the Detroit data (98), nine
factors were identified: road salt, industrial (Fe+Zn), cloud processed sulfate,
two types of metal works, road dust, local sulfate source, sulfur with dust, and
homogeneously formed sulfate. Road salt had high concentrations of Na and Cl.
Mixed industrial emissions are characterized by Fe and Zn. The cloud processed
sulfate had a high concentration of S in the intermediate size mode. The first
metal works represented by Fe in all three size modes and by Zn, Ti, Cu, and
Mn. The second included a high concentration of small size particle sulfur with
intermediate size Fe, Zn, Al, Si, and Ca. Road dust contained Na, Al, Si, S,
K, and Fe in the large size mode. The local and homogeneous sulfate factors
show high concentrations of S in the smallest size mode, but different time series
behavior in their contributions. Sulfur with dust is characterized by S and a mix
of Na, Mg, Al, Si, K, Ca, Ti, and Fe from the medium and large size modes. The
analysis utilized light absorption measurements at 4 wavelengths, 350, 450, 550,
and 650 nm, to provide limited information on the carbonaceous components in
the samples.

At Dulles International Airport, five major emission sources: soil, road salt,
aircraft landings, transported secondary sulfate, and local sulfate/construction
were identified (99). Aircraft landing was notable for it had not previously been
identified as a significant source of PM2.5. Its pattern showed small particles
of sulfur, zinc, bromine, zirconium and molybdenum. This factor is assigned
to particles that are emitted during landings. The sulfur and zinc come from
tire wear. These elements are key constituents in tires. Often a visible puff of
smoke is observed at touchdown. There is considerable frictional heat produced
at this instant and particles are generated across the particle size range. Both
zirconium and molybdenum are used in high temperature greases as might be
used to lubricate bearings that would undergo significant heat stress. The energy
deposited in the bearings can be expected to liberate particles from the lubricants.
The study shows that time- and size-resolved DRUM data can assist in the
identification of the airport emission sources and atmospheric processes leading
to the observed ambient concentrations.

Conclusions

For more than 45 years, data analysis tools like factor analysis have been
applied to atmospheric chemical species data to help understand the nature of
the sources of pollutants and the relative contributions those sources make to
the observed ambient concentrations. Many of these tools have been forms of
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self-modeling curve resolution and two of them, Positive Matrix Factorization
(PMF) and Unmix, have come to dominate the field of receptor modeling. It
is particularly important to recognize that atmospheric compositional data are
qualitatively different from many SMCR problems given the higher measurement
errors, but more importantly the variability in their chemical characteristics
(profile). This variability makes the receptor modeling challenging. There is also
the problem of rotational ambiguity that is present for lack of adequate numbers
of true edge points in most data sets. Unmix has not been as widely used as PMF.
PMF has proven to be very useful and now is widely used by a large number of
investigators that are able to take advantage of an easy-to-use tool that now has
greatly improve approaches for estimating the uncertainties in the solutions (100).
The key step forward for source apportionment in the future will be developing
new measurement tools that will provide more chemical species to better define
and separate sources and higher precision to reduce the level of noise in the data.
These improvements would permit even better source resolutions to be performed.
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Chapter 7

Hierarchical Classification Modeling of
Watershed Data by Chemical Signatures

Steven D. Brown* and Liyuan Chen

Department of Chemistry and Biochemistry, University of Delaware,
Brown Laboratory, 163 The Green, Newark, Delaware 19716, United States

*E-mail: sdb@udel.edu

Complex data with many objects and classes may benefit from
the use of a hierarchical class modeling approach in which
samples receive more than one class label. A hierarchical model
employing multiple class labels is better suited to making use
of class relationships in the data as compared to traditional
“flat” modeling methods. However, hierarchical modeling
requires a number of choices that make the data analysis much
more complex than a traditional classification. This chapter
introduces concepts from hierarchical modeling of complex
data with multi-label class ontologies, and considers what
choices must be made to establish class labels in complex data
and build a hierarchical classifier. An example is provided to
show the details of the methodology in modeling hierarchical
geospatial data.

1. Introduction

Traditional classification, in chemometrics or elsewhere, consists of
developing a rule for assignment of class labels to two classes. The fundamental
assumption is that each sample belongs to only a single class characterizing its
semantics, so a classification step is used to discover each new sample’s semantic
meaning. The classification is focused on discovery of the single rule that
separates the two classes. Subsequent to that assignment, the unique semantics
of new samples are assigned by application of the rule. This approach has been

© 2015 American Chemical Society
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heavily used since Fisher’s early work and was an area where Bruce Kowalski
published extensively early in his career. The field of chemometrics became
strongly associated with what was then called “pattern recognition,” in large part
because of early machine-learning papers by Kowalski and Bender (1–3), by
Kowalski and his students (4, 5), and by Isenhour and his students (6, 7).

More recent work in classification in chemometrics has often been conducted
with partial-least squares discriminant analysis, a version of the two-class
Fisher discriminant in which the boundary is established by partial least squares
regression (8) which permits work with data having more variables than samples
and having more than two class labels. This partial least squares discriminant
(PLSD) classifier is often used in one form or another in multi-label classification
in chemometrics (9–12).

As the size and complexity of data has increased, it is necessary to perform
classifications where the number of variables is much larger than the number of
samples and where there are complex relationships among a large number of class
labels. Simply assigning one class label to each group of data, as is done in both
traditional classification and in the more modern PLSD analyses, is often no longer
adequate, as it ignores the relationships that exist among classes and discards an
important source of information about the set of measurements beingmodeled; it is
increasingly common that real-world samples may be regarded as having multiple
semantic meanings and therefore may be defined by multiple class labels, better
reflecting their place in a complex data set.

Multi-label classification, in which each sample is associated with multiple
class labels, each with separate semantic meaning, is new to the field of
chemometrics but has been an active area of research in machine learning for
several years (13–15). Multi-label modeling involving multiple labels using an
hierarchical class taxonomy should offer advantages when close relationships
between classes exist, e.g., in classifying gene or protein function, or in
environmental studies where the classes define regions of space or time. However,
the nature of the class taxonomy and the multi-label nature of the data require a
modeling approach that differs from that used in traditional classification analysis
used in chemometrics. Studies on complex data show that treating complex data
as having multiple class labels has real advantages in performance sufficient to
justify the additional work and complexity of the data analysis (16).

This chapter considers some issues involved in multi-label modeling and
overviews some results from multi-label modeling applied to classification of
water from different regions of the United States by using chemical and isotopic
signatures of the water samples.

2. Structure in Class Labels
2.1. Hierarchical Taxonomy and Relationships in Class Labels

Establishing multiple class labels for a set of data requires a system by which
the structure of class labels is specified. This system, known as the taxonomy of the
labels, reflects interrelations in classes, in particular the correlation of class label
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information. Much of the work in machine learning suggests that large amounts
of related class information are often better structured in a hierarchical taxonomy.
This taxonomy is defined over the partially ordered set (C, ), where C is a finite
set of class labels that enumerates all class concepts in the data domain, and the
relation represents an “is-a” relationship, as defined by the following rules:

1. The largest element R C is the root of the hierarchical taxonomy.
2. ci, cj, C, if ci cj then cj ci
3. ci C, ci ci
4. ci, cj,ck C, ci cj and cj ck imply ci ck

These rules define a tree-structured class taxonomy, but they are also suited
to directed acyclic graph (DAG) class taxonomies as well. Note that the rules
defining the “is-a” relation create an asymmetric (by rule 3: e.g., all cats have
4 feet, but not all animals with 4 feet are cats) and transitive (by rule 4: e.g.,
all cats are mammals, and all mammals are animals, therefore all cats are
animals) hierarchical relationship among classes. Such a relationship among
classes is usually expressed as a phylogenic tree. With the “is-a” relationship, a
classification done using this class taxonomy is inherently multi-class, because
there are more than two class labels defining the data, and it also becomes
inherently multi-label, because each object belongs not only to a single class but
also to all of that class’s ancestor classes, and any sample defined by one of these
tree-structured taxonomies will naturally be associated with more than one class
label to indicate its place in the taxonomy.

2.2. Multi-Label Hierarchical Classification

Because the taxonomy defined above is graphical, it is convenient to represent
a class by a node. The class node a graphical representation of a single class,
defined by a node label. The set of four rules given above in Section 2.1 permit
class taxonomies in which the class nodes each have either a single parent or
multiple parents; that is, the class represented by the node has a relationship with
classes immediately above it in the tree. Taxonomies with class nodes having
only single parents have an inverted tree structure, with a “root” node at the top
and terminal “leaf” nodes at the bottom of the graph. Taxonomies where some or
all nodes have multiple parents are described by a directed acyclic graph (DAG).
Examples of a tree-structured taxonomy and a DAG-structured taxonomy are
shown in Figure 1 below. The connections highlighted in blue form loops in the
hierarchy that distinguish a DAG ontology; for example, there are 2 parents (A12
and A22) for one of the nodes (A222) there.

Class nodes are specified by taxonomy, by level, and by label. Most often,
the structure of the class taxonomy is made clear by a diagram of the class nodes
showing the ancestry of each class node.
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Figure 1. a: Tree-structured taxonomy. Nodes labeled in red are terminal nodes.
b: Directed acyclic graph (DAG) taxonomy. Terminal nodes are labeled in red.

The two connections shown in blue make this an acyclic graph.
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Next, the nature of the class labels must be specified. The specification must
distinguish between multi-label data modeled by a set of class nodes all located at
one level (the top level) and multi-label data modeled by a hierarchical class node
structure like that of Figure 1. A class taxonomy with all nodes at the same level in
the hierarchy is called “flat” because in that structure, any class node hierarchy is
collapsed to a single level, and all node ancestry is ignored. Assignments of class
labels making use of this class taxonomy are therefore called “flat” classifications.
A flat class structure has a single class identity as a label: e.g. 1, 2, 3, …, and
while there may be multiple class labels describing the data, class node identities
are each assigned to only one class label. These flat, multi-class classifications can
be regarded as a special case of multi-level, multi-label classifications. Similarly,
a two-class, flat classification is also a special case of the hierarchical, multi-class,
multi-label case (13).

2.3. Algorithms for Hierarchical Classification

Almost all classifications performed in chemometrics have been done with flat
data class taxonomy, using two or more class labels. Learning the classification
rules for the 2-class, special case that encompasses the bulk of the applications
of classification is by now well-established, and a wide range of algorithms are
available (17). Similarly, learning classification rules for multi-label data assigned
a flat taxonomy is also well-studied (18).

2.3.1. Algorithmic Strategy

In contrast to algorithms suited to flat classification, however, algorithms for
learning the rules for a multi-label, multi-class classification are still being actively
explored (14, 15). When a class taxonomy defines multiple layers of nodes, it
is often useful to set the class labels to reflect that structure. The flexibility of
the structure poses a challenge to developing approaches to multi-label learning,
but even more difficult is the fact that the possible number of possible label sets
grows exponentially as the number of possible class labels increases. To deal
with the huge number of possible labels, it is necessary to exploit dependencies
and correlations among labels in the data if possible to discover the underlying
taxonomy of the class labels (14).

One way of taking advantage of these dependencies is to deal with the
classifications in a label - by- label fashion, ignoring the other labels, in effect
decomposing the classification problem into a series of independent binary
classifications, one per label. This “first-order” strategy (14, 19) is conceptually
simple, but it has the disadvantage of ignoring any label-label correlations present
in the data, potentially biasing the classification model. A way of capturing
these label relations is to deal with pairs of labels, possibly by ranking relevant
and irrelevant labels or by examining interactions between pairs of labels. This
“second-order” approach (14, 20) generalizes well, but other interactions in the
data may not be captured by this strategy. An extension of this approach might
consider all other labels’ influence on a label or might look for correlations and
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dependencies among random subsets of the labels. These “higher-level” strategies
(14, 21) are much more computationally demanding, not to mention increasingly
problematic to implement as the number of labels increases. A last option is to
encode the relations between labels by setting up a particular taxonomy based on
the semantics of the label set in the data. This option can produce strong classifier
performance, since by specifying the taxonomy, all interactions are specified,
but using a higher-level strategy of this sort usually requires a priori knowledge
of the data structure beyond that provided by the features and any incomplete
knowledge of the structure results in a bias.

2.3.2. Class Labels

Assigning class labels in a hierarchy involves assignment of level as well as
class within that level. In Figure 1 the nodes are labeled by level; thus, a node
at the first (top) level has a single label (e.g., 1) while a node at the 3rd level
has three labels (e.g., 1.1.2). In the tree-structured hierarchy, this multiple label
identifies the ancestors of the node: the node labeled 1.1.2 indicates that this is a
node (2) at the third level, but the label also tells us that this node is associated
with node 1 at second the level and node 1 at the first level, so this node can be
regarded as belonging to class 2 at the third level, but also to class 1 at the second
level and class 1 at the first level, giving each sample of this class 3 labels, and
reflecting its place in the hierarchy defining the data and the classes in the data.
Multiple labels are needed because objects assigned to this node can be regarded
as belonging simultaneously tomultiple classes present in the data. In amulti-label
classification, the aim is to assign all of the labels of the data, either sequentially or,
if possible, simultaneously. A multi-label classification requires that the labeling
capture the classes and all class hierarchy. It has the benefit of using all data for all
labeling, but both hierarchy and labels for the entire data set must be determined
from those data.

2.4. Classification Metrics

The hierarchy of classes is ultimately set by the performance of the multi-label
classifier on a set of data with known class labels. In traditional, “flat” supervised
learning, the usual metrics for deciding on the location of the class boundaries is
often based on the overall classification accuracy, or sometimes on other common
classification metrics such as the F-measure or the area under the Receiver
Operating Characteristic (ROC) curve (AUC). For a multi-label classification,
these metrics are not especially well-suited, and other evaluation metrics have
been proposed (14, 15). These fall into two groups: example-based metrics and
label-based metrics. Example-based metrics use the results from each test sample
to return a mean value of the metric over the test set. The common example-based
metrics for multi-label classification are:
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where there are p test samples and where yi and ŷi are the true and predicted labels
for sample i, respectively.

A label-based metric assesses the classifier performance on each of the q class
labels separately, then returns the metric averaged over all class labels. For the jth
class label yj, the binary performance of the classifier on this label is

where TPj are true positives, FPj are false positives, TNj are true negatives, and
FNj are false negatives for data with label j with respect to the true value yi. If
we take M as some binary classification metric (e.g., accuracy), the label-based
classification metrics are defined as

As Zhang and Zhou (14) note, label-basedmetrics based onmacro- andmicro-
averaging assume equal weights for labels and samples, respectively, but both
differ from the example-based metric described above.

2.5. Decision Trees

For the same hierarchy, there are two other ways of assigning class labels.
The class labels can be assigned by use of a decision tree, or by a sequence of
separate classifications performed at each level. In a decision tree, a sequence
of decisions are made, often binary, to reach a set of terminal “leaf” nodes,
where a decision is made as to class label, usually by majority vote of the objects

165

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

7

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 

http://pubsdc3.acs.org/action/showImage?doi=10.1021/bk-2015-1199.ch007&iName=master.img-019.png&w=299&h=97
http://pubsdc3.acs.org/action/showImage?doi=10.1021/bk-2015-1199.ch007&iName=master.img-020.png&w=299&h=64


assigned to the node. While the decision taken at each of the intermediate nodes
could involve assignment of class labels, they are generally not assigned at
these intermediate nodes in the hierarchy. Instead, decision trees make use of
single-label classification at the terminal “leaf” nodes of the decision tree, but
information on the path though the tree and on any ancestor classes are not of
interest, no matter how many layers there are in the hierarchy. The node indicated
by label A12 in Figure 1a is a leaf node, and in a decision tree using the hierarchy
of Figure 1a, the decisions made at higher levels in the hierarchy merely identify
the path to the terminal node under a specified decision metric, so each of the
class nodes in a decision tree can be described by a single label. Note that it is
possible, even common, to assign the same class label to multiple leaf nodes in a
decision tree, unlike class label assignments made in a tree-structured hierarchy.
The metric for deciding a partition of the data to increase the class purity is often
either the Gini index or the information as measured by the cross-entropy of
the data. Neither is optimal for determining rules for separating a set of class
labels, and it is usual to prune the classification tree once constructed by using a
cross-validation step. That, too, is seldom optimal, in part because of the choice
of the single variables used to define the partitions defining the decision paths is
somewhat arbitrary, and a criterion must be selected for deciding when to stop
the recursive partitioning of any impure space containing objects with more than
one class label. The disadvantages of decision tree-based approaches are that the
method is essentially univariate; the partitions are all based on single variables,
and a “weak” classifier results. Recent practice in many fields where decision
trees are used has been to use collections of these cross-validated trees, starting
each one from a different (random) partitioning choice – a random forest. Using
a random forest helps here because the combined set of classifiers somewhat
compensates for weakness in the classifiers. These so-called “bagged” methods
can be expected to outperform any single method, as Breiman has demonstrated
(22). It is also possible to weight classifiers according to their performance of
a practice test set, up-weighting ones that perform well and down-weighting
ones that perform poorly; this “boosting”, when combined with bagging, can
often lead to classifiers with very strong predictive performance even though the
individual classifiers are not very strong. Advantages of the decision tree include
interpretability, ability to use ordinal and other data, and a built-in resistance to
missing data; the random forest gives up most of its interpretability for improved
performance as compared to a decision tree.

2.6. Sequential Multi-Label Classification

A hierarchy like that shown in the Figure 1a can also be regarded as
describing a sequence of binary or higher classifications done on subsets of the
data. Like the decision tree, a decision is made at each branch in the hierarchy,
but unlike the decision tree classifier, multivariate class rules are developed at
each branch node leading to assignment of explicit class labels, and an effort is
made to achieve optimal or nearly-optimal partitioning of data as measured by the
usual classification metrics. Depending on the specific classifiers used, the data
in the hierarchy could be assigned more than two class labels at each branch node
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using this approach, something that is more difficult to implement effectively in
a decision tree. The end result is a multi-label classification with information
on class ancestry, but unlike a flat, multi-label classification, each class label is
assigned independently of other nodes at the same level of the hierarchy, and
each decision is made not on the entire data, but on only a portion of it because,
like a decision tree, the sequence of decisions recursively partitions the data
into increasingly smaller subsets. The assignment of class labels at each stage
results in samples being associated with multiple class labels. In a sequential
classification, cross-validation may be used to optimize rules produced at each
stage, but no pruning is done.

Where these approaches differ most is in the establishment of class labeling
rules. In each case, the class label structure must be established prior to
determining the rules for assigning class labels to new data. The classification
rules depend both on the methodology used and on the optimization metric. Zhou
and Zhang (14) review recent research on multi-label classification and point
out some of the strengths and weaknesses of various algorithmic approaches to
multi-label classification. In this report, only two will be mentioned.

The most common way at present to perform a multi-label classification is
to use a conventional decision tree, modified to make (usually) binary decisions
and assign levels at each level of the tree, as discussed above. This method,
first reported by Clare and King (16) has become the de facto standard against
which other methods are compared, despite its shortcomings as a first-order
approach (14). In this approach, multiple labels in the leaves are allowed and
the informational entropy used to calculate information gain (IG) in the standard
C4.5 algorithm of Quinlan (23)

is modified slightly, from

to

for a set of NS samples in training set S, someNSa ofwhich have value a for attribute
A, with each class ci represented by percentage PS(ci) for each class ci of the NC
classes.

With this modification, the binary splits that result from the application of the
C4.5 algorithm consider not only the probability of membership in class i but also
the probability of other classes. This approach has the advantage of simplicity
and interpretability, but has the disadvantage of retaining C4.5’s focus on binary
decisions. Gao, et al. have extended the binary, single-feature approach of Clare
and King to multi-label classification (24).
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Multi-label C4.5 also retains the classifier’s relatively weak classification
performance, as it bases classification on a single variable, even with multi-label
data (22, 24, 25). The alternative is to perform the sequential classification
discussed above using a sequence of classification steps. Any multi-label,
multivariate classifier algorithm can be used for this task, but this paper focuses
on a model-based-classifier optimized with the expectation-maximization (EM)
algorithm (26) using the naïve Bayes classifier (27). Model-based classification is
closely related to model-based clustering (28), which was used to define clusters
in this work, so it is convenient to make use of this classification approach. In
most comparisons of flat classifiers, the naïve Bayes classifier usually ranks as one
of the strongest simple classifiers (25, 27). The naïve Bayes classifier outputs the
probability for each sample belonging to each class. The probabilistic estimate
of class label permits an estimate of the classification uncertainty for the training
data as well as for new samples.

2.7. Gaining Advantage from Multi-Label Classification

From the discussion above, it should be clear that the training and use of a
multi-label classifier is likely to bemuchmore demanding than a training and using
a traditional, flat classifier, but studies have shown that for many data sets in text
analysis (13–15) and even a few in biology and in chemistry, there is an advantage
to using themulti-label classifier [e.g., (29–32)]. The biggest gains in classification
performance are to be expected from data where there are many classes or where
the classes show some sort of distance-based or other relationship, as might be
found in genomics or in a geospatial set. In both of these situations, the class
label ontology is often structured. However, it has been suggested (13) that any
situation where there are both numerous classes and a large number of objects to be
assigned class labels should benefit from a multi-label classification. Increasingly,
this is the case in chemometric data, as data become cheaper to collect and interest
increases in the fine detail present in label structure.

2.8. Modeling the USGS Surface Water Data

The example shown in this paper concerns the modeling of a dataset
composed of water analyses made over a period of about four years on 2685 water
samples collected at 328 river sampling sites distributed over the continental
USA, and Alaska, the US Virgin Islands and Puerto Rico, and Hawaii. The
longitude and latitude of each sample location was recorded, but no class label
information was available. A total of 23 trace elements and 2 isotopic ratios were
measured at different times during the period 1984-1987. The 23 trace elements
were Aluminum (Al), Barium (Ba), Calcium (Ca), Magnesium (Mg), Potassium
(K), Chlorine, measured as chloride (Cl), Iron (Fe), Manganese (Mn), Strontium
(Sr), Silicon (Si), Zinc (Zn), Sulfur, measured as sulfate (S), Copper (Cu), Nickel
(Ni), Fluorine, measured as fluoride (F), Lithium (Li), Beryllium (Be), Cadmium
(Cd), Chromium (Cr), Cobalt (Co), Silver (Ag), Vanadium (V) and Selenium
(Se). The two isotopic ratios measured are 1H:2H and 16O:18O. Elemental analyses
of these water samples were performed using USGS-certified methods using
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inductively-coupled plasma atomic emission spectrometry and mass spectrometry.
Isotope ratios were obtained by isotope ratio mass spectrometry, as described in
(33). The distribution of sampling sites is shown in Figure 2.

Figure 2. Geographical distribution of sampling sites (in green) for the water
study. Major rivers are depicted in red.

2.8.1. Missing Data Imputation and Preliminary Examination

Environmental studies commonly have missing data, where a particular
analysis was not run, and censored data, in which the values observed for a
particular analysis were at or below the detection limit. This data set had many
missing or censored data, a total of 34.3% of the measurements in the set. As
Figure 3 shows, while almost all of the variables had some missing or censored
data, several variables were dominated by missing or censored measurements.
Each of the last 7 trace elements listed above has at least 80% missing values, and
was removed from further consideration. Multiple imputation based on a version
of the EM algorithm (26) was applied to data that had been log transformed to
make variables approximately normally-distributed.
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Figure 3. Missing and censored data in the water data. Green indicates no
missing entries. Yellow indicates 1 missing entry; red indicates more than 2

missing entries.

The distributions of some of the chemical measurements available for the data
set after imputation are summarized as Boxplots in Figure 4.

As seen in Figure 4, apart frommeasurements of the isotopic ratio, most of the
other measurements available for the modeling had a very wide range and a high
standard deviation compared with their mean, indicating a large spread in the data.
As the Figure shows, there is also right-skewness in much of the data, even after
removal of outliers. Considering the extremely broad study area and the time over
which the sites were sampled to collect groundwater data, a substantial part of the
scatter in the data is likely from seasonal variation and changes in stream flow as
well as from the geologic variation that we seek to relate to location. Therefore,
given the redundant information and possible undesirable effects brought into the
modeling by seasonal variations in the chemical signatures, careful selection of
the chemical measurements had to be made to capture as much spatial variation
as possible while retaining as little of the seasonal variation as possible so that
the spatial variations in chemical measurements chosen at each transitional region
overwhelm the seasonal and other temporal effects occurring at each individual
sampling site in the same region.

Approximately 15% of the training samples were regarded as outliers and
were removed during model construction; the outlier samples were generally ones
that were not clustered into the same region when performing majority voting at
each sampling site.
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Figure 4. Exploratory data analysis of USGS water data variables for the
Southeastern USA.

2.8.2. Dealing with Temporal Effects in the Data

The use of a multi-label classifier requires the ontology of the class labels.
Most studies with multi-label data involve an analysis of text, where it is possible
to pre-establish a hierarchy of classes from consideration of grammar and usage.
Finding the sets of labels for a multi-label set where the ontology has not been
pre-established is not routine, and there has not been much systematic research on
methods to discover the ontology. For a set of data in which the class ontology
is based on distance between class labels, an approach based on distance may
be useful, for example the well-known distance-based hierarchical clustering that
is common in exploratory analysis or by other clustering methods may give an
estimate of the class ontology.

To classify samples on the basis of location, it is important to retain analyte
measurements that correlate well to location but to discard those that do not to
reduce the dimensionality of the modeling. Water levels at the sampling sites
vary with the season, the weather, and the time of day, producing temporal
“noise” which has a strong effect on analyte concentrations. While variations
in the local and regional geology suggest that certain analyte concentrations
should vary with location, the temporal changes in water levels result in analyte
concentrations that may or may not have a connection to geology, and hence
to the geographical location of the sample. Because samples are taken at fixed
locations, but at different times and seasons, some temporal averaging of the data
occurs, but because the sampling was neither consistent at all sites nor uniform in
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timing or frequency, separating the temporal and geological effects on the data
is challenging.

As an indication of the extent of the temporal effects, Figure 5 shows the
variation in Mg and SO42- for just one region (the Ohio valley region) given as a
function of month over the three years of this study. Both fluctuate strongly by
month and within the month; there is little in the way of an obvious trend in the
fluctuations.

Figure 5. Variation of two of the analytes with season in the Ohio Valley region

In establishing class labels from the data by variable selection and clustering,
several guiding principles were assumed:

1. Any classes found in the data should be compact: smaller, regional
clusters are preferred over larger, diffusely defined clusters;

2. The class topology is hierarchical, with single parent class structure; and,
3. All variables used in establishing class labels must show a strong

relationship with distance over the geographic region defined by the
class.

In the work discussed here, model-based clustering on selected variables was
used to identify clusters in the trace analysis data (34). Because analyte levels
may correlate well to geography over some small sub-region of the whole but
may correlate much less well over a larger geographic region, variables were
selected for each step in the clustering, not globally. To minimize the effects
of temporal variation in the data used for clustering, at each level of the class
ontology, variograms (35)

172

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

7

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 

http://pubsdc3.acs.org/action/showImage?doi=10.1021/bk-2015-1199.ch007&iName=master.img-027.jpg&w=323&h=187


were used to identify variables z most strongly related to distance h as measured
at N(h) pairs of samples xi. Finding an increasing trend in γ(h) with distance h in
the variogram does not identify the existence of non-random spatial dependence,
and it is necessary to compare the experimental variogram to a variogram created
for the same variable, but without systematic spatial information, by randomizing
the spatial data. A permutation test (36) is used to exclude those variables without
systematic spatial patterns. The test is performed by randomly permuting the
values of the same variable of interest a large number of times, T, and a variogram
is made for every random ordering. The permutations scramble any systematic
spatial information present in that variable, and generate a randomly varying set
of variograms for the permuted versions of z. In Figure 6, the first five permuted
variograms for variable z are represented by dashed lines. The experimental
variogram for the un-permuted variable z, indicated in bold in Figure 6, shows a
clear, increasing trend, while the variograms for that same variable z calculated
after random permutation of z to remove systematic spatial contributions are much
flatter. These variograms represent the variable z without the systematic spatial
dependence in z. The random permutations of the values of variable z define a
distribution on γ(h), from which critical points (for example, the 2.5th and 97.5th
percentiles) of the γ(h) values can be calculated for each separation distance h
over the range considered for the modeling. The two limiting variograms defined
by these critical points define the critical regions for a random distribution defined
by the data in variable z; an experimental variogram falling outside the region
defined by these limiting variograms thus has non-random spatial behavior over
the distance examined at a specified confidence. The two boundary variograms
defining the critical limits of the distribution are represented by two solid lines
with squares in Figure 6. The size of geographic regions varied with level in
the ontology of the classes, as did the variables identified by the variographic
analysis.

2.8.3. Finding Clusters in the Surface Water Data

Clustering of the data into a large number of distinct, compact clusters was not
possible in a single step, in part because of variation in sampling density over the
regions studied. Regions near the East and West coast, on the Missouri River, the
Mississippi River and the Ohio River had high sampling site density, while other
regions had low sampling site density or even no sampling sites.
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Figure 6. Feature identification of 1H:2H from its variogram. The bold, solid line
shows the experimental variogram calculated over some region of the spatial
data. The two solid lines with squares indicate the variograms for the 2.5th and
97.5th percentiles of the distribution of variograms obtained at each separation
distance from the T random perturbations of location in 1H:2H data. Only five
dashed lines, representing variograms obtained for 1H:2H for the first five random
perturbations, are shown here for clarity. From reference (32), with permission.

Because the identification of clusters depended on identification of a suitable
set of variables sensitive to distance and the set of variables used in the clustering
was discovered by choosing samples from a region over which to test the
variogram, the two tasks couple. Multiple passes of variable selection and
clustering were needed at each level of the hierarchy to find self-consistent sets
of compact clusters and distance-related variables. Unfortunately, there is no
automated method to perform this simultaneous variable selection and clustering.

To obtain compact clusters, model-based clustering was used (28).
Hierarchical clustering was used to help establish an initial guess needed to
perform the model-based clustering under the Expectation-Maximization (EM)
algorithm (26). A Gaussian distribution of data within the clusters was assumed,
but the cluster size and shapes were permitted to vary as needed. In each clustering
experiment, Markov-chain Monte Carlo methods were used with model-based
clustering as optimized by the Bayes Information Criterion (BIC) to decide on the
number of clusters found and the sample membership of each cluster (34). When
samples collected at a fixed location but at different times failed to be classified
into the same cluster, a majority voting rule was implemented so that all samples
from the same geographical sampling location were forced to belong to the same
region (cluster). The BIC was maximized in these experiments, identifying both
cluster location and shape. Emphasis was placed on finding the best set of stable
clusters. Generally, the Monte Carlo simulation was run for sufficient samples
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to ensure that all clusters were stable and all cluster memberships were settled.
Figure 7 summarizes the process.

Figure 7. Clustering used to define hierarchical class structure. M1-M4 are
different assumed shapes for clusters (34).

2.8.4. Estimating Uncertainty in Clustering

To ensure that clusters discovered in the data were reliable indicators of class,
a new method to estimate the sample membership uncertainty during clustering
was developed. The MCMC modeling implemented by the Gibbs sampling
method can be used to test the uncertainty of membership of water samples
from the USGS surface water data. Suppose the clustering results correspond to
the watersheds, i.e., different clusters match different watersheds, and then the
clustering membership uncertainty can be seen as the stability test of watersheds
formed by samples collected at different sites.

To illustrate this process, consider water samples from three adjacent
watersheds: Ohio, Mid Atlantic and South Atlantic Gulf. After variable selection
using the variogram to find a set of variables that relates strongly to location,
model-based clustering is performed on the samples. Three clusters result from
the analysis.

These clusters are assigned labels from themixture parameters that result from
the model-based clustering analysis, as shown in Figure 8. However, since these
water samples are assigned class labels only once, no assessment of stability or
uncertainty is available for each sample. Due to the high variability of the surface
water samples, both the location indicated by chemical measurements and the
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stability of that pattern (watersheds) is desired to permit reliable prediction of new
data.

Figure 8. Clustering of three regions in southeastern USA

MCMC modeling implemented via Gibbs sampling can be used to estimate
the clustering uncertainty. Through the Gibbs sampling, a joint distribution for
every mixture parameter can be obtained instead of a single optimal value, and
multiple mixture model can be built to fit the data after sampling from those joint
distributions. In this way, the water samples can be clustered multiple times and
an estimate of the stability of the clustering can be obtained.

The key in MCMC modeling is to create a Markov process whose stationary
distribution is the joint posterior distribution of parameters, and then sample
from the conditional posterior distribution of each parameter for long enough
(using enough iterations) that the distribution of draws is close enough to a
stationary distribution. For each cluster in the Gaussian mixture model, Gibbs
sampling is used to estimate the model parameters for each cluster: means μk,
covariance Σk, mixing coefficients τk and the classification vector V = (υ1, ..., υn),
where υk implies that observation xi is assigned to cluster k. After convergence
of the MCMC simulation (which occurs after a sufficient number of burn in
iterations), the samples are used as the Bayes estimate of the parameter, and if we
continue sampling from the joint posterior distribution of each parameter for more
iterations, the samples obtained can be regarded as the true Bayesian estimates of
the parameters. The clustering uncertainty can then be calculated by clustering
observations multiple times based on those Bayesian estimates (34).

In Figure 9 below, the iteration plots of the mixing coefficients τk obtained
by Gibbs sampling for samples from Ohio, Mid Atlantic and South Atlantic Gulf
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are shown. They give a good indication of the number of iterations needed for the
burn-in period. The initial guess used for the mixing coefficients is 1/3 for every
cluster, represented by a “*” sign in the Figures, indicating that each cluster is
equally likely for these data. The convergence is almost immediate, and successive
draws are independent.

Figure 9. MCMC settling of the mixing coefficients in model-based clustering
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Figure 10 shows the stabilization of the three cluster means μk in the MCMC
simulation. At the beginning of Gibbs sampling, the starting value for cluster mean
is the grand mean of the dataset consisting of the 3 sites, represented by the green
dot in the center of the Figure. The cluster means calculated after each iteration
are indicated by black “+” signs. In Figure above, only the first 50 iterations of
Gibbs sampling for the cluster means are shown. The three colors correspond to
the samples from the three different watersheds. The convergence of the means is
again immediate, and the estimated mean for each cluster stabilizes in the center
of each cluster.

Figure 10. Cluster mean convergence of samples from three watersheds by
MCMC via Gibbs sampling

DuringGibbs sampling, 3000 iterations are run and the first 1000 iterations are
discarded as “burn-in” of the simulation. The mixture parameters samples from
the remaining 2000 iterations are regarded as the “true” estimates and used for
classifying samples, to access sample clustering uncertainty and for testing class
stability. In Figure 11, the stability of the clustering is summarized by samples with
different signs. Black dots indicate samples with high stability, while square and
circles represent samples with low stability. Most of the samples show a clustering
uncertainty of less than 0.1, meaning that at least 90% of the iterations locate them
in one, fixed cluster. The low uncertainty of samples produces stable clustering
and stable classes. The clustering of the three sites used in this illustration is
consistent with that found using an optimal set of mixture parameters from the
EM algorithm. Samples from Ohio all have high clustering stability because they
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are well separated from the other two clusters. There are only three samples with
low cluster stability, all of which lie on the boundary of the Mid-Atlantic and
South Atlantic Gulf groups. It is therefore not surprising that these samples are
sometimes clustered in Ohio, and sometimes in the adjacent group depending on
small changes in the cluster model parameters found. Figures 10 and 11, taken
together, demonstrate that the site clustering pattern produced from the systematic
identification of variables and clusters using the Gibbs sampling to estimate the
clustering parameters is very stable, and most of the samples in the larger set
showed a very low clustering uncertainty during 2000 Gibbs sampling runs.

Figure 11. Clustering stability of samples from three watersheds by MCMC
via Gibbs sampling

It is interesting that the three regional clusters identified in the Figure 8 above,
a subset of the 18 terminal node clusters discovered in all, agreed well with the
results from a smaller hydrogeological study on the Ohio, Mid-Atlantic and Gulf
regions, where the authors also found three distinct regions of essentially the same
shape (36).

2.8.5. Results of Clustering the USGS Data

The series of variable selection and clustering steps led to the set of 18
terminal node clusters shown in Figure 12. Because model-based clustering
assigns a posterior probability of class membership rather than assigning
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membership in a binary sense, some overlap in cluster membership was possible
at each level in the hierarchy. To determine class labels, however, all samples
were identified with the label of the cluster where they showed the largest
posterior probability of membership. The compactness of the each of the terminal
sub-regions depended largely on the sampling site density.

Figure 12. Terminal node clusters produced from clustering of chemical
signatures of USGS surface water samples

The set of clusters discovered in this way from chemical signatures was
compared with the USGSmap of watersheds shown in Figure 13 (37). Most of the
clusters defining geographic regions were well-separated from each other except
for a few sites. Some of the terminal sub-regions discovered by the clustering, in
particular those for regions on the West Coast of the USA, Florida and for New
England, corresponded well to the published climate zones (37) for the United
States. Given the sizable differences in the way that the regions were assigned,
the similarity is notable.
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Figure 13. Watersheds identified by the US Geological Survey (33).

3. Construction of the Multi-Label, Hierarchical Model

Tree-structured hierarchical, multi-label modeling provides a general route to
the estimation of location as well as an estimate of its associated uncertainty for
multivariate spatial data, especially with a set of chemical measurements. Building
a tree-structured hierarchical model is comprised of three steps.

3.1. Hierarchical Decomposition of the Region

The first step is to decompose some region A containing all of the spatial
data into a number of regionally compact sub-regions (A11, A221, …A2221). The
decomposition is implemented in an hierarchical way; the spatial data in region
A are first decomposed into a set of broad sub-regions (A1 and A2), and then
each broad sub-region is decomposed in turn into a set of smaller geographic
sub-regions, analogous to the decomposition of a data space done in recursive
partitioning.
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The geospatially-related grouping in the data is assigned to the separate
classes though the cluster analysis performed earlier, and the sequence of cluster
analyses determines the ontology of the hierarchical classification model. Thus,
spatial identification of a geographically distinct sub-region is achieved through a
hierarchy of clustering steps in which samples from different geographic regions
form different clusters. Both chemical measurements and geographical features
can be used in clustering to decompose regions, though this work focused on
geospatial analysis though chemical signatures alone. Unlike a spatial clustering
approach that prefers samples from the same cluster to have similar geographical
features (e.g., by requiring that they are close to each other spatially), the
clustering done here in the formation of hierarchical regions allows samples from
the same cluster (a geographic region) to be separated in space as long as they
form distinct classes at the next level of the hierarchy. For example, samples with
class label A1 might separate into a set of possibly disjoint sub-classes A11, A12 ,
A13 and A14.

As shown in Figure 1a, the class model for the water samples can be
interpreted as a set of hierarchical regions represented in a tree ontology of
class labels, in which every node represents a region as well as a portion of
spatial data belonging to that region. In this tree representation, the root node
corresponds to the initial, complete geographical region spanning all of the spatial
data, and the terminal nodes correspond to compact sub-regions where further
spatial subdivision by clustering with a set of spatially relevant features was not
successful. Once the clustering is accomplished, each parent node in the hierarchy
also describes a transition between two regions by means of a classification based
on a set of chemical measurements or geographical features that separate the two
(child) sub-regions according to their labels.

3.2. Hierarchical Region Identification

Based on the tree representation already defined by clustering using the sets
of spatially significant variables corresponding to each of the sets of hierarchical
regions, each of the modeling steps in the tree structure is part of a hierarchical
classification sequence, in which classifiers are built at each parent node (sub-
region) of the tree by using samples known from the clustering to be of that sub-
region as training samples. The aim of this step is to identify a smaller sub-region
at every node and to eventually provide a set of distinct, geographically compact
sub- regions to enable classification of a test sample with unknown location by
means of the top-down sequence of binary classifications. The features used to
build the classifiers are limited to the available chemical measurements because
geographical features are not available for the unknown samples. At each node,
the set of chemical measurements used for regional identification is the same as
those used in regional decomposition step if geographical features were not used in
the clustering to find sub-regions; otherwise, a variable selection procedure must
be performed to find the best subset from among all chemical measurements to
best distinguish the particular pair of sub-regions.

Depending on the classification algorithm used for identification of rules for
assigning the sub-region labels, the uncertainty in class membership, which is
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interpreted as one minus the probability of the test sample belonging to a class
represented by one of the sub-regions, can be assessed in different ways: by
resampling, by bootstrapping, or by computation of the posterior probability of
class membership (38–40). With the hierarchical structure of the model, a test
sample is passed by means of a sequence of classifications along a path from root
node to a terminal node (the terminal sub-region). All classifiers along the path
are built locally, to best distinguish different portions of data based on different
sets of chemical measurements; as a consequence, the posterior probability that
the test sample is classified into any parent node is independent from the posterior
probability that it is then classified into either of the child nodes. Because of the
hierarchical structure of the model, the probability of a test sample belonging
to a terminal sub-region is the product of the probabilities computed at each
classification node that the sample has passed through. One minus the probability
that the test sample belongs to the terminal sub-region gives a measure of the
uncertainty that the test sample belongs to the sub-region after a sequence of
classification steps.

3.3. The Hierarchical Classifier

At each node of the hierarchical model, two clusters were chosen based on
a dendrogram produced by model-based clustering so that each “parent region”
always had at most two “child regions”. The dataset was divided into a training set
including 2357 samples and a test set including 328 samples; the test set consisted
of one sample taken from each of the different sampling sites and was held to
test the model later. For each sampling site, the test sample selected for testing
was selected as the one that had the smallest multivariate Euclidean distance to
the vector consisting of the median values of 18 chemical measurements for all
samples collected at the same sampling site, so that the test sample at each location
can be expected to be less affected by seasonal variation compared to one chosen
by random selection.

The binary, tree-structured hierarchical model produced from the analysis is
shown in Figure 14. The terminal nodes indicate the terminal sub-regions, which
are represented by circles with the region number inside. The parent nodes indicate
the transitional regions, which are represented by rectangles with its child region
numbers inside. All the training samples are assigned to only one of the 18 terminal
sub-regions to establish the classification rules used in the hierarchical, multi-label
model. For each parent node, the chemical measurements used to separate its two
child regions in clustering are indicated between the two child nodes. At different
levels of the tree, different sets of chemical measurements are used to decompose
the regions. Some chemical measurements, especially the 1H:2H isotopic ratio, are
used more frequently than others p because they were less affected by seasonal
effects and tended to show systematic variation with distance; The 1H:2H ratio
is known to be less affected by stream-flow conditions and therefore by seasonal
variations as compared tomost other chemical measurements (41–43). In addition,
the 1H:2H ratio was strongly affected by elevation and by climate, both of which
should vary spatially. Of the 18 usable chemical measurements, the isotope ratio
values had much smaller variances than the rest, which suggests that many of the

183

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

7

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 



extreme values and wide ranges in trace element levels are produced by stream-
flow, seasonal and geologic variation. Trace elements with less spread compared
with that of other trace elements, for example Ba, Ca and Si, were used more often
in this study because for this spatiotemporal USGS surface water dataset, those
chemical measurements with lower variance tended to show systematic variations
with distance.

Figure 14. Hierarchical regions produced by the tree-structured hierarchical
model of the USGS surface water dataset

3.4. Building the Hierarchical Probabilistic Classifier

At each node of the model, the region label determined from the clustering
step was taken as the “true” class label of the samples from that region; a
classifier can be built at each parent node to distinguish samples from the two
different “child” nodes of that region. To be consistent with the probability-based
clustering algorithm used here and to easily assess uncertainty estimates, a Naïve
Bayes classifier (44, 45) was built at each non-terminal node to identify the rule
for assignment of class labels for its sub-regions. A Naïve Bayes classifier is a
simple but effective (46) probabilistic classifier based on Bayes’ theorem, but
requires that the set of selected features were independent of one another within
each class. The Bayes classifier is also known to work well when the assumption
of feature independence is not strictly valid (47). With a naïve Bayes classifier,
classes are associated with data in two steps: first, a training step is performed in
which parameters of a probability distribution are estimated for features of each
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of the classes based on the training samples, and a prediction step is performed in
which the method computes the posterior probability of the test sample belonging
to each class. The test sample is then classified by choosing the class with
the larger posterior probability. The same set of chemical measurements used
in the clustering step were also used in developing the classifier at each node.
Because most of the chemical measurements showed non-Normal distributions,
a kernel density function (44, 48) was computed and fit to the samples from
each region instead of using the normal distribution for the prior in the Bayes
classifier. A Normal kernel, where the kernel function is a standard normal density
function, was used here (18), and the width of the kernel smoothing window was
automatically chosen for each combination of feature and class. The posterior
probabilities, obtained by the application of Bayes’ rule combining the prior and
the likelihood function that the sample belongs to each of the two regions, were
computed from the naïve Bayes classifier. The sample was classified into the
region with the higher posterior probability, as shown in Figure 15. The prior
probabilities for each class were taken as the relative frequencies of each class
based on the number of training samples found in each region in the clustering
step. The likelihood function depended on the probability distributions of the
selected chemical measurements for each class. As discussed in Section 3.2, the
posterior probabilities calculated at each non-terminal node are independent from
the posterior probabilities of the other nodes because of the use of independent
priors and the differing chemical measurement sets used. The probability of a
test sample belonging to a terminal sub-region was the product of the posterior
probabilities computed at each classification node that the sample passed through.

Figure 15. Placing an unknown sample in a geographic region by descending
the tree

185

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

7

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 

http://pubsdc3.acs.org/action/showImage?doi=10.1021/bk-2015-1199.ch007&iName=master.img-038.jpg&w=323&h=224


Table I. Success in locating test samples

Number of samples Classification
accuracy

Average
probability of
classification

Training set 1931 94% 0.85

Test set 1a 328 85% 0.85

Test set 2b 500 88% 0.87
a Drawn from reserved training data. b Kriged unknown data created from training
samples.

3.5. Assessing the Tree-Structured Hierarchical Model

Three approaches are adopted to evaluate the performance of the
tree-structured hierarchical modeling algorithm. First, a training set made from
the USGS surface water dataset was used to estimate the training error of the
model. Second, a test set made from USGS surface water data that were omitted
from consideration when building the hierarchical model was used to test the
model. A third test was based on a set of test samples generated by spatial
interpolation using Kriging, in which the chemical measurements at simulated,
unobserved locations are predicted based on the original USGS surface water
data. The accuracy of the classification of the data into geographic regions
was assessed from application of the model to these three test sets. Results are
discussed in turn below.

3.5.1. Testing the Tree-Structured Hierarchical Model Using the Training Set

All of the training samples (with outliers removed) with known terminal
sub-region were used as the input to the classification model to estimate their
locations. Because the training samples were used to build the tree-structured
hierarchical mode, any test of the model using training samples is likely to produce
optimistic results. The locations predicted from the model were compared with
the true locations of the training samples to determine the training set error.
With a hierarchical classification step, the classification training error of the
hierarchical model can be easily determined, as shown in Table IV. In Table IV,
CE represents the classification error (expressed as a percentage) of the samples
that are supposed to be from each terminal sub-region after comparing the
terminal sub-region label obtained in model-building and the predicted terminal
sub-region label. For any terminal sub-region, if No represents the number of
training samples in this region based on clustering results, and N̂o represents
the number of samples from No training samples that are actually classified into

this terminal sub-region, the classification error (CE), defined as ,
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and is within the range [0,1]. The classification accuracy is . The quantity
TD indicates the depth of the each of the sub-regions in the tree-structured
hierarchical model; that is, the number of separate binary classifications needed
to reach this region of the tree. For example, in Figure 14, region 15 has a depth
of 2 and region 16 has a depth of 3. For all No samples in each of the terminal
sub-regions, CP, the average of all the No posterior probabilities, is an estimate of
the average probability that samples of this region are classified into a terminal
sub-region. Note that the posterior probability for each of the No samples assigned
to the region by clustering is the product of the probabilities computed at each
classification node that the sample has passed through. The results from Table
IV show that most terminal sub-regions had a classification error of less than 5%
for the training set. Considering that the data were environmental samples with
many imputed values, that there were seasonal effects embedded in the data and
that the classification here was not done in a single step, but over multiple steps
in a hierarchical structure, a training error 5% is very good. However, there were
some terminal sub-regions in the model that showed much higher classification
error in the training set. The higher error resulted from limited data for these
regions as well as the difficulty of selecting informative chemical measurements
and from incomplete removal of interference from the seasonal variations in the
data for these regions. By summing classification accuracies from all 18 terminal
sub-regions in the data, an overall classification sample accuracy of 94% was
calculated for all training samples. Samples from terminal sub-regions with
larger model depths (TD) in the hierarchy, for instance regions 7, 8 and 9, were
more likely to have lower CP values, so that these sub-regions showed lower
probabilities of label assignment and correspondingly higher uncertainties in the
class assignment for any sample reaching this sub-region. However, the samples
belonging to those terminal sub-regions having higher classification errors were
also likely to have higher uncertainty in class membership as established in the
clustering step; samples from regions 2, 7 and 10 showed this tendency. Samples
classified into an incorrect terminal sub-region (one where the cluster label for the
sample differed from that found from the classification) generally showed a higher
Bayes posterior membership uncertainty in that assignment, while the samples
classified into a correct terminal sub-region typically were associated with a
lower Bayes posterior uncertainty. For all the training samples that were correctly
classified, the average CP of all the samples was 0.85, while the average CP was
0.55 for all of the misclassified training samples. The classification uncertainty
of samples from a specific terminal sub-region were found to be related to the
depth of that terminal sub-region in the tree-structured hierarchical model; when
the three sub-regions with high classification errors were not considered, the
correlation coefficient between TD and CP over 18 terminal sub-regions was -0.7,
which suggests a strong negative relationship between the depth of the terminal
sub-region and the class posterior membership probability for samples belonging
to that terminal sub-region. This result is not surprising, since sub-regions with
high depth in the hierarchical scheme require more classification steps, and those
additional steps introduce more uncertainty in the assignment of the class label.
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Table II. Training error for the classification step in tree-structured
hierarchical modeling of USGS surface water data (modified from (32))

Region CE(%)a TD CP Region CE(%) TD CP

1 7.1 4 0.82 10 7.6 3 0.67

2 37.8 5 0.70 11 0.6 4 0.84

3 2.3 5 0.84 12 0.0 5 0.78

4 16.8 4 0.82 13 5.6 6 0.81

5 3.4 5 0.85 14 0.0 6 0.89

6 3.6 6 0.85 15 1.1 2 0.92

7 10.2 7 0.77 16 2.5 3 0.92

8 1.0 8 0.77 17 19.0 4 0.85

9 2.5 8 0.79 18 1.3 4 0.95
a CE is the classification error. CP is the average posterior probability that all No samples
belonging to the terminal sub-region predicted from the clustering are correctly classified
by the hierarchical classifier. TD indicates the depth of the region in the tree-structured
hierarchical model.

Table III. Training error for the classification step in tree-structured
hierarchical modeling of reserved samples from the USGS surface water

data (modified from (32))

Region Na CE (%) CP Region N CE (%) CP

1 14 14.3 0.77 10 27 22.2 0.70

2 7 28.6 0.70 11 32 9.4 0.81

3 17 5.9 0.82 12 2 0.0 0.63

4 18 27.8 0.82 13 2 0.0 0.86

5 25 24.0 0.86 14 4 0.0 0.80

6 11 36.4 0.83 15 26 7.7 0.89

7 14 14.3 0.73 16 22 4.5 0.93

8 19 26.3 0.77 17 7 14.3 0.90

9 19 21.0 0.74 18 37 0.0 0.95
aN is the number of test samples in each terminal sub-region. CE is the classification error of
regional identification. For each terminal sub-region, CP is the average posterior probability
that samples are hierarchically classified into the predicted terminal region.
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3.6. Testing the Tree-Structured Hierarchical Model Using an External
Test Set

Table III summarizes the prediction results from the tree-structured
hierarchical model applied to the test set made from the reserved USGS surface
water data. Each test sample was assigned a “true” region number obtained
from the results of clustering of similar samples so that the region identification
error could be calculated. Since every sampling site of USGS surface water data
contained a sample withheld from modeling to permit evaluation of the model, the
“true” region number of the test sample was regarded to be the same as the region
number of the training samples measured at the same location but at different
times.

The overall classification accuracy of terminal sub-region samples was 85%,
compared to 94% for training samples. This result is again very good considering
that the test set is new data and may have contained seasonal information not
incorporated in the model in building the tree-structured hierarchical model.
This result demonstrates that the spatial variation contained in the selected
chemical measurements at each node dominates any new seasonal information in
test samples during the hierarchical classification. As with the training set, the
regional identification error found for the test set varied greatly over the different
sub-regions. Compared with the training samples, the test set contained far fewer
samples for each terminal sub-region. Therefore, any inconsistency in region
identification caused by seasonal variation effects contained in an individual
sample had a correspondingly larger impact on the sample classification error, CE.
As seen in the classification of training data, the probability of class assignment
CP was generally lower for those sub-regions with higher classification errors
(CE) or greater tree depths (TD) (Table IV). For all test samples that were
correctly classified, the average CP was 0.85, while the average CP was 0.66 for
all of the test samples that were classified into a terminal sub-region not consistent
with the clustering. The probability that test samples were classified into the
correct terminal sub-region was usually fairly consistent with that found for the
training samples.

3.7. Testing the Tree-Structured Hierarchical Model Using Kriged Samples

Ordinary Kriging (49) was implemented to generate new, simulated USGS
surface water samples at locations unobserved in the training set. OrdinaryKriging
is not suited to the situation where there are multiple samples measured at the
same location. Therefore, the original USGS data with 2685 samples and 25
chemical measurements was trimmed down to a smaller set with 328 samples and
25 chemical measurements by averaging of all samples taken at the same location.
This averaging has the effect of modifying the temporal variation at each site.
Because the variation may not be random, the averaging may not have reduced the
temporal effects in the data.
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Kriging amounts to predicting a measurement at a specified location from a
weighted linear regressionmodel based onmeasurementsmade at nearby locations
(49). To estimate the chemical measurements at new locations, the following steps
were required for each terminal sub-region:

1. The locations of the unobserved data were computed. The new locations
were computed by taking the weighted average of the locations of two
training samples that were randomly chosen from the entire dataset. The
weight was also randomly simulated at every iteration, within the range
(0,1). For each terminal sub-region, the number of new Kriged samples
generated within the region was made proportional to the number of
training samples belonging to the region.

2. The variogram was calculated and fitted for each variable. The Euclidean
distance between two samples was calculated from their longitude
and latitude coordinates. For each chemical measurement within the
maximum Euclidean distance used to define the variogram, a separate
experimental variogram was calculated based on the trimmed dataset,
which represented the spatial dependence of each of the 25 chemical
measurement variables in the original USGS surface water data in
the sub-region. A least-squares fit of the theoretical variogram using
a spherical model (50) was then performed on each experimentally
determined variogram.

3. Interpolation. Based on the variogram model found in Step 2, the
weights for ordinary Kriging were computed and the expected error was
minimized, then the set of 25 chemical measurements expected at the
new, unobserved locations found in Step 1 were estimated in turn.

The true regions for Kriged test samples at new locations were taken as the
terminal sub-regions from which they were generated. Due to the topology of the
sampling sites, 13% of the samples generated by Kriging contained some negative
values for chemical concentrations because of the negative Kriging weights
combined with high values of location. Samples with any negative concentration
values were removed before testing the tree-structured hierarchical model. The
newly generated Kriging data consisted of 435 samples that estimated the 25
chemical measurements at locations different from those used for the original
USGS surface water data sampling. The results of testing the model by using
these data are shown in Table IV.

For the set of 435 useful Kriged samples obtained, the regional sample
identification accuracy was 88%, and CP was 0.87. This result is very good
considering the fact that new samples at locations unobserved in the training set
were hierarchically classified into mostly correct regions. While it should be
noted that the Kriging does not make a completely new sample because these
are related to existing samples, and the Kriged samples are constrained to a
single region to permit successful interpolation, it should also be noted that the
Kriged data permit interrogation of the model multiple times and in all regions,
something that is not possible with the withheld training data because of limited
sampling data.
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Table IV. Error of tree-structured hierarchical modeling predictions
estimated using Kriged test data (modified from (32))

Region Na CE(%) CP Region N CE (%) CP

1 22 0.0 0.83 10 42 19.0 0.71

2 13 30.7 0.79 11 37 2.7 0.83

3 33 3.0 0.86 12 3 0.0 0.70

4 22 9.1 0.94 13 4 0.0 0.84

5 26 19.2 0.88 14 11 0.0 0.90

6 17 11.8 0.85 15 37 8.1 0.94

7 22 4.5 0.83 16 32 9.4 0.91

8 30 26.7 0.73 17 12 25.0 0.79

9 36 22.2 0.81 18 36 11.1 0.91
a N is the number of samples generated by ordinary Kriging in each sub-region. CE is
the classification error of regional identification. For each terminal sub-region, CP is the
average posterior probability that samples were hierarchically classified into the terminal
region assigned from clustering.

For samples at new locations generated by Kriging, the tree-structured
hierarchical modeling algorithm can be used to accurately place the sample into
the correct terminal sub-region with low uncertainty. The seasonal variation was
controlled by averaging chemical measurements at each sampling site which,
together with the interpolation of values for chemical variables by ordinary
Kriging and slightly more compact test locations as compared to the distribution
of original locations, produced location prediction performance for the Kriging
samples that was slightly better than that of the test set made up of the original
USGS surface water samples.

4. Conclusions

Tree-structured hierarchical modeling is an attractive way to simplify
modeling of complex data. The creation of the hierarchy requires careful selection
of variables and identification of class ontology, but the combination of a variable
selection with model-based clustering offers a systematic way to accomplish the
goal. The example presented in this paper demonstrates a systematic approach
to prediction of location for USGS surface water samples from their chemical
signatures, even in the presence of strong interference from temporal effects.
Judging from the results of testing by three different assessment approaches, the
tree-structured hierarchical model gives reliable identification of the geographical
region from a chemical signature.
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Oklahoma 74078

*Phone 405-744-5945, e-mail bklab@chem.okstate.edu

Pattern recognition has been applied to the problem of searching
the infrared (IR) spectral libraries of the Paint Data Query
(PDQ) automotive paint database to differentiate between
similar but nonidentical IR spectra, and to determine the
assembly plant, model, and line of an automotive vehicle from
a paint chip or smear recovered from a crime scene where
damage to a vehicle and/or injury or death to a pedestrian has
occurred. Currently, modern automotive paints use thinner
undercoat and color coat layers protected by a thicker clear
coat layer. All too often, a clear coat is the only layer of the
manufacturer’s paint left at the crime scene. In these cases, the
use of text to encode chemical information about each layer
of the manufacturer’s paint in PDQ limits the searching of
clear coats, as modern clear coats generally have only one of
two possible formulations: acrylic melamine styrene or acrylic
melamine styrene polyurethane. In these cases, the text based
search system of PDQ would return a large (and unusable)
number of hits that span multiple manufacturers and models. To
assess the evidentiary information content of clear coats, pattern
recognition techniques have been applied to the IR spectral
libraries of the PDQ database to differentiate between similar
but nonidentical automotive paint spectra. A prototype library
search system to identify the assembly plant of an automobile
from the IR spectrum of a clear coat has been developed. The
proposed pattern recognition assisted IR library search system
for automotive clear coats described in this chapter consists
of two separate but interrelated components: search prefilters

© 2015 American Chemical Society
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to reduce the size of the PDQ library to a specific assembly
plant or plants corresponding to the unknown paint sample and
a search algorithm that cross correlates the spectrum of the
unknown with each IR spectrum in the set identified by the
search prefilters to identify the IR spectrum in the truncated
PDQ library most similar to the unknown. Even in challenging
trials where the clear coat paint samples evaluated were all the
same manufacturer (e.g., Chrysler) within a limited production
year range (2000-2006), the assembly plant and model of the
automobile from which the unknown automotive paint sample
was obtained could be correctly identified. The prototype
pattern recognition system outperformed commercial library
search algorithms.

Introduction

Automotive paint in the form of an intact chip or smear is often recovered
from a crime scene where damage to a vehicle and/or injury or death to a
pedestrian has occurred. Studies (1, 2) performed by the Royal CanadianMounted
Police (RCMP) approximately 40 years ago demonstrated that vehicles could be
differentiated by comparing the color, layer sequence, and chemical composition
of each layer in an automotive paint system. To make these comparisons
possible, the RCMP developed the Paint Data Query (PDQ) database for forensic
automotive paint examinations (3, 4). Today, PDQ contains over 21,000 samples
(street samples and factory panels) that correspond to over 84,000 individual
paint layers, representing the automotive paint systems used on most domestic
and foreign vehicles marketed in North America. Over 53 local, state, and federal
forensic laboratories in the United States use PDQ as well as international forensic
laboratories including the National Forensic Laboratory Service of the RCMP, the
Center of Forensic Sciences in Toronto, Canada, members of the ENFSI network
of European forensic science institutes, and the Australian Police Services.

Modern automotive paints typically consist of four layers (5, 6). From top to
bottom, they are the clear coat, color coat, surfacer, and primer. PDQ is a database
of the physical attributes, chemical composition and the infrared (IR) spectrum
of each layer of the manufacturer’s original paint system. If the original layers
are present in a paint chip or smear, PDQ can assist in identifying the specific
manufacturer and model of the automotive vehicle within a limited production
year range.

PDQ utilizes a text-based search system that relies on information about the
color and the chemical formulation of both the top and undercoat paint layers to
identify the vehicle. Although direct searching of IR spectra in PDQ does not
exist, a text based search of both the physical and chemical attributes of each
layer of automotive paint can serve as a potent pre-screen to a manual IR search
(7, 8). Unfortunately, the use of text to encode chemical information about each
paint layer limits the searching of clear coats as modern clear coats applied to
automotive substrates generally have only one of two possible formulations:
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acrylic melamine styrene or acrylic melamine styrene polyurethane. Although the
presence of urethane in a clear coat paint sample is coded for a sample in PDQ, the
amount could be large or small, a feature that can easily be distinguished through
a visual inspection of the IR data but cannot be searched using the text-based
system of PDQ. Thus, initial PDQ searches for this clear coat sample alone would
return a large (and unusable) number of hits that span multiple manufacturers and
models.

The vast majority of clear coats are not colored (i.e. tinted), and none contain
inorganic fillers or binders with which to further differentiate one clear coat from
another. As modern automotive paints use thinner undercoat and color coat layers
protected by a thicker clear coat layer, all too often, a clear coat paint smear is the
only layer of paint left at the crime scene. In these cases, the text based search
system of PDQ cannot identify the automotive vehicle. Although commercial
library search algorithms are capable of searching paint layers in combination
against the PDQ spectral libraries with some success, clear coat formulations are
too similar for these algorithms to generate accurate hit lists by searching clear
coat paint spectra alone.

To assess the evidentiary information content of clear coats, pattern
recognition techniques have been applied to the IR spectral libraries of the
PDQ database to differentiate between similar but nonidentical automotive paint
spectra. To tackle the problem of library searching, a prototype library search
system to identify the assembly plant of an automobile from the IR spectrum of
a clear coat paint smear has been developed. The proposed pattern recognition
assisted IR library search system for automotive clear coats described in this
chapter consists of two separate but interrelated components: search prefilters
to reduce the size of the PDQ library to a specific assembly plant or plants
corresponding to the unknown paint sample and a search algorithm that cross
correlates the spectrum of the unknown with each IR spectrum in the set identified
by the search prefilters to identify the IR spectrum in the truncated PDQ library
most similar to the unknown. As the size of the library is culled for a specific
match, the search prefilters increase both the selectivity and accuracy of the
search. Even in challenging trials where the clear coat paint samples evaluated
were all the same manufacturer (e.g., Chrysler) within a limited production year
range (2000-2006), the assembly plant and model of the automobile from which
the unknown automotive paint sample was obtained could be correctly identified.
Furthermore, the prototype pattern recognition system outperformed commercial
search algorithms.

Experimental
Method

IR spectra of 1206 clear coats applied to the metal surfaces of automobiles
and trucks assembled at 25 General Motors (GM), 12 Chrysler, and 17 Ford
assembly plants within a limited production year range (2000 – 2006) were
obtained using either a Thermo-Nicolet 6700s, BioRad 40A or BioRad 60
FTIR spectrometer equipped with a DTGS detector. All clear coat IR spectra

197

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

8

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 



were collected in transmission mode using high pressure diamond anvil cells
augmented with either a Harrick 4x beam condenser (BioRad 40A and BioRad
60) or Harrick 6x beam condenser (Thermo-Nicolet 6700s instrument).

Data preprocessing of the IR spectra of the clear coats was crucial to
ensure the successful development of the search prefilters. In this study, data
preprocessing consisted of aligning the optical systems of the Thermo Nicolet and
BioRad FTIR spectrometers through normalization of the helium neon frequency,
application of the discrete wavelet transform (9) to resolve overlapping spectral
bands, and variable selection to identify informative wavelet coefficients using a
genetic algorithm. Each step is described in detail below.

Spectral Alignment

Sample preparation and placement can affect both wavelength alignment and
the measured absorbance. When the sample itself is not the limiting aperture,
small wavenumber shifts, nevertheless, can be observed if the sample is not
positioned at a fixed angle relative to the IR beam. The beam may be refracted
at an angle that displaces the image on the detector as the beam traverses the
sample. This can change the pathlength of the beam through the interferometer,
altering the relationship of the interferogram to the He-Ne laser, resulting in small
wavenumber shifts. For samples that are tilted with respect to the laser beam,
the pathlength within the sample can also change altering measured absorbance
values. To address these problems, the interferogram of each clear coat paint
spectrum was multiplied by the Norton-Beer medium apodization function prior
to the application of the Fourier transform to ensure that measured absorbance
would be equal to the true absorbance. Each IR spectrum was then normalized
to the helium neon laser frequency of 15798.0 cm-1. This laser frequency
value corresponds to that measured at the aperture setting to ensure that peak
positions are independent of aperture setting. Both operations (apodization and
normalization) were performed using OMNIC (Thermo Nicolet). After this
preprocessing, each spectrum consisted of 1869 points for the entire mid-IR range
of 400 cm-1 to 4000 cm-1.

Wavelets

The fingerprint region (667 cm-1 to 1640 cm-1) of each spectrum comprised
of 506 points was normalized to unit length and subject to wavelet analysis using
the MATLAB Wavelet toolbox 3.0.4 (Math Works, Natick, MA). Outside of the
fingerprint region, each IR spectrum consisted of only noise (2100 cm-1 to 2500
cm-1) due to uncompensated absorption of IR radiation by the diamond anvil
cell, and C-H stretching bands which were present in all clear coat spectra. The
discrete wavelet transform (10, 11) using the Symlet6 mother wavelet at the eighth
level of decomposition was applied to the fingerprint region of each spectrum.
Wavelet coefficients generated at all eight levels of decomposition (1150 in total
for each spectrum which included the approximation coefficients) were retained
for discriminant development.
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Genetic Algorithm for Variable Selection

Wavelet coefficients that conveyed information about the manufacturer
or the assembly plant of the automotive vehicle were identified by a genetic
algorithm (GA) for pattern recognition analysis (12–17). The pattern recognition
GA identified a set of wavelet coefficients that optimized the separation (i.e.,
discrimination) of the assembly plants in a plot of the two or three largest principal
components of the aligned, preprocessed, and wavelet transformed spectral data.
Because principal components maximize variance, the bulk of the information
encoded by the selected wavelet coefficients was about the classification problem
of interest. The principal component (PC) plot in the fitness function of the
pattern recognition GA acted as an embedded information filter. A good PC plot
could only be generated by coefficients whose variance or information content is
primarily about spectral differences between the assembly plants. The principal
component analysis routine incorporated into the fitness function of the pattern
recognition GA limited the search to these types of coefficient subsets, thereby
significantly reducing the size of the search space. In addition, the pattern
recognition GA focused on those assembly plants and/or clear coats that were
difficult to classify, as the pattern recognition GA trained by boosting the relative
importance (i.e., weights) of those assembly plants and/or paint samples (i.e.,
vehicles). Clear coats that consistently classified correctly were not as heavily
weighted as those samples that were difficult to classify. Over time, the pattern
GA was able to learn its optimal parameters in a manner similar to a neural
network. The pattern recognition GA integrates aspects of artificial intelligence
and evolutionary computations to yield a "smart" one-pass procedure for variable
selection and classification. Further details about the operation of the pattern
recognition GA can be found elsewhere (18, 19).

Search Prefilters and Infrared Library Searching

Search prefilters (i.e., classifiers) were developed from PDQ library spectra to
extract information from an unknown clear coat to yield a response based on the
manufacturer and the assembly plant of the vehicle. Most search prefilter identify
library spectra dissimilar to the unknown for the purpose of excluding them from
the search. This allows for more powerful search algorithms that are also more
computationally intensive to be utilized for library matching as the size of the
library has been culled for a specific match. In this study, the Chrysler search
prefilters limit the search of each validation sample to a specific assembly plant
or group of assembly plants whose clear coat spectra are similar to the clear coat
spectrum of the validation sample. As the Chrysler clear coat search prefilters only
retain those spectra in the library similar to the spectrum of the validation sample,
both the accuracy and speed of the search would be expected to be increased.

Spectral features encoded in the wavelet coefficients identified by the
pattern recognition GA were used to develop these classifiers. Search prefilters
to identify the assembly plant of Chrysler automotive vehicle were developed
from IR spectra obtained from 379 clear coats and 12 Chrysler car and truck
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assembly plants in North America between the years 2000 and 2006. To ensure
classification accuracy, search prefilters for assembly plant were developed using
a hierarchical classification scheme. This approach simultaneously allowed for
removal of irrelevant variation from the data using the pattern recognition GA to
identify informative wavelet coefficients and regularization of the classifier for ill
posed classification problems using linear models (i.e., principal component plots)
of the data. Feature selection and classification was optimized simultaneously
at each level. Differentiation between the inter-class and intra-class variation
could not be achieved using a horizontal classification structure (where all twelve
assembly plants are differentiated simultaneously). For automotive manufacturer
(GM versus Chrysler versus Ford), a single classifier was sufficient to identify the
make of the vehicle.

Search prefilters developed from the clear coats eliminated dissimilar spectra
from the library search providing the forensic scientist with an opportunity to take
advantage of more sophisticated but also more time-consuming search algorithms.
Commercial infrared library search systems compare IR spectra by summing the
squares of the difference between spectra at every wave number. However, these
algorithms do not perform well when differentiating between similar spectra as
small peak shifts are not handled well and bands of low intensity, which may be
highly informative, are largely ignored. For these reasons, library searching was
performed using a cross correlation search algorithm to provide the best match
between an unknown and the IR spectra in the hit list generated by the search
prefilters. The cross correlation function has been shown to correctly identify
unknown spectra from similar but nonidentical spectra (20). Although cross
correlation is slower than conventional search algorithms, it is suitable as a post
searching method to rank probable matches that have been selected by a faster
algorithm (e.g., search prefilters).

Library matching was performed by cross correlating the unknown with
each spectrum in the library subset identified by the search prefilters and then
comparing each cross correlated spectrum with the corresponding autocorrelated
library spectrum (21). Since cross correlation is a measure of the similarity of two
time varying functions, cross-correlation can be used to estimate the correlation
between two signals by computing the dot product after a suitable time lag has
been applied to one of the signals. The cross correlation function Cij for the
sampling interval Δt and relative displacement nΔt between two signals sI and sj
is estimated by the following equation

Autocorrelation, which is similar to cross correlation, is the signal cross
correlated with itself. Autocorrelation and cross correlation were performed by
normalizing all IR spectra to unit length. The cross correlation library searching
algorithm identifies the IR spectrum that is most similar to the unknown in the
truncated library using three different modes of comparison:
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1. Each autocorrelated library spectrum is compared to each cross-
correlated library and unknown spectrum

2. Autocorrelated spectrum of unknown is compared to each cross-
correlated unknown and library spectrum.

3. Autocorrelated spectrum of unknown is compared to each autocorrelated
library spectrum

Each comparison was made using a range of window sizes centered at the
midpoint of the cross-correlated data (which corresponds to the cross correlation
between two signals with zero lag) and increased in steps of 10 points or 100
points to include the entire cross correlated spectrum. Because of the symmetry
associated with cross correlation, the comparisons were made from only one side
of the center burst.

To assess similarity of spectra in the library matching, the Euclidian distance
was used to evaluate the similarity index (see Equation 2) where sij is the
similarity of the match, dij is the Euclidean distance between the cross correlated
and autocorrelated spectrum and dmax is the largest distance in the set of (cross
correlated and autocorrelated) spectra compared. The similarity metric in
Equation 2 was used instead of the hit quality index (22), as it proved to be more
informative for ranking IR spectra.

Library spectra were arranged in descending order of similarity for each
comparison. The five most similar library spectra in each window size were
chosen from each comparison, with the sample identities preserved. After every
window was analyzed, a histogram was generated depicting the frequency of
occurrence for the most similar spectra. The top two library spectra with the
highest frequency of occurrence were selected as potential matches.

Library matching was performed using the entire with the exception of
the region corresponding to absorption of infrared radiation by the diamond
transmission cell. The performance of the prototype pattern recognition driven
library searching system (search prefilters and cross-correlation library search
algorithm) was compared to OMNIC, a commercial library searching algorithm
used in Thermo Nicolet FTIR spectrometers.

Results and Discussion
Development of Search Prefilters for Chrysler

The first step was to differentiate Chrysler clear coats by plant group. To
determine the composition of each plant group, Chrysler assembly plants (see
Table 1) whose clear coat paint spectra exhibited a doublet for the carbonyl band
(acrylic melamine styrene polyurethane) as opposed to a singlet (acrylic melamine
styrene) were flagged. The two assembly plants (Jefferson North and Newark)
whose clear coat paint spectra exhibited a doublet for the carbonyl were placed
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in Plant Group 13, whereas the assembly plants whose clear coat paint spectra
exhibited a singlet for the carbonyl band were assigned to other plant groups.
Using only clear coat paint spectra, each of the ten remaining assembly plants
(see Table 1) was analyzed by principal component analysis (23) to assess its class
structure. In four of the ten assembly plants (Bramalea/Brampton, Dodge Main,
St. Louis, and Toledo), the PC plot of the clear coat paint spectra exhibited two
distinct sample clusters (see Figures 1 - 4).

Table 1. Chrysler Assembly Plants and Plant Groups

Plant PID#
(data
label)

Divided
between
groups

Group

Belvidere (BEL) 1000 NO 11

Bloomington (BLO) 1001 NO 12

Bramalea/Brampton (BRA/BRP) 1002 YES 11, 12

Dodge Main (DOD) 1003 YES 11, 12

Jefferson North (JFN) 1004 NO 13

Newark (NEW) 1006 NO 13

Saltillo (SAL) 1007 NO 11

Sterling Heights (STH) 1008 NO 12

Saint Louis (STL) 1009 YES 11, 12

Toledo (TOL) 1010 YES 11, 12

Toluca (TOU) 1011 NO 11

Windsor (WIN) 1012 NO 12

For the Bramalea/Brampton assembly plant, clustering occurred on the basis
of model: Dodge Charger and some Chrysler 300 lines versus Chrysler Concorde,
Chrysler LHS, Dodge Intrepid, Dodge Magnum, and other Chrysler 300 lines,
whereas for Dodge Main, clustering occurred on the basis of the production year
of the vehicle: 2000-2002 versus 2003-2006. For the St. Louis assembly plant,
clustering occurred on the basis of both model and line: Dodge Caravan and
Chrysler Town and Country versus Dodge Ram, whereas for Toledo, clustering
was correlated to a specific vehicle: Jeep Liberty versus the other models and lines
assembled at the plant. Because the average clear coat paint compared visually,
the four assembly plants were further divided into subplants on the basis of the
observed sample clustering.
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Figure 1. Plot of the two largest principal components of the clear coat paint
spectra from the Bramalea/Brampton plant. Two distinct sample clusters are

evident in the plot.

To assign the remaining assembly plants and subplants to specific plant
groups, the average IR spectrum (clear coat layer) of each assembly plant or
subplant was computed. Principal component analysis and hierarchical clustering
(24) were performed on the average spectra. Figures 5 and 6 summarize the results
of the clustering study. Plant Group 11 consists of Belvidere, Bramalea/Brampton
(subplant), Dodge Main (subplant), Saltillo, St. Louis (subplant), Toledo
(subplant), and Toluca assembly plants, whereas Plant Group 12 is comprised of
Bloomington, Bramalea/Brampton (subplant), Dodge Main (subplant), Sterling
Heights, St. Louis (subplant), Toledo (subplant), and Windsor assembly plants.
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Figure 2. Plot of the two largest principal components of the clear coat paint
spectra from the Dodge Main plant. Two distinct sample clusters are evident in

the plot.

Figure 3. Plot of the two largest principal components of the clear coat paint
spectra from the St. Louis plant. Two distinct sample clusters are evident in

the plot.
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Figure 4. Plot of the two largest principal components of the clear coat paint
spectra from the Toledo plant. Two distinct sample clusters are evident in the plot.

Figure 5. Hierarchical cluster analysis (Wards method) of the average IR
spectrum (clear coats) of each assembly plant or subplant. 1000 = Belvidere,
1001 = Bloomington, 1002 = Bramalea/Brampton subplant, 1003 = Dodge Main
subplant, 1007 = Saltillo, 1008 = Sterling Heights, 1009 = St. Louis subplant,
1010 = Toledo, 1011 = Toluca, 1012 = Windsor, 1102 = Bramalea/Brampton
subplant, 1103 = Dodge Main subplant, 1109 = St. Louis subplant, and 1110 =

Toledo subplant.
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Figure 6. Principal component analysis of the average IR clear coat paint
spectrum of each assembly plant or subplant. 1000 = Belvidere, 1001 =
Bloomington, 1002 = Bramalea/Brampton subplant, 1003 = Dodge Main

subplant, 1007 = Saltillo, 1008 = Sterling Heights, 1009 = St. Louis subplant,
1010 = Toledo, 1011 = Toluca, 1012 = Windsor, 1102 = Bramalea/Brampton
subplant, 1103 = Dodge Main subplant, 1109 = St. Louis subplant, and 1110 =

Toledo subplant.

Having ascertained the membership of each plant group, the next step was
classification. The Chrysler clear coats were divided into a training set of 379
samples and a validation set of 42 samples. The validation set samples, which
were selected by random lot, were not part of the training set used to develop the
search prefilter for plant group or assembly plant. The training set of 379 clear
coats was divided into 3 classes by Plant Group (see Table 1). Figure 7 shows a
PC plot of the two largest principal components of the 379 wavelet transformed
clear coat IR spectra and the 1150 wavelet coefficients comprising the training set
for Plant Group (see Table 1). All wavelet coefficients were autoscaled prior to
principal component analysis. Each clear coat is represented as a point in the PC
plot of the data. (1 = Plant Group 11, 2 = Plant Group 12, and 3 = Plant Group 13).
Although Plant Group 12 is well separated from Plant Groups 11 and 13, the other
two plant groups overlap in the PC plot of the wavelet transformed IR spectral
data.
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Figure 7. PC plot of the two largest principal components of the 379 wavelet
transformed clear coat IR spectra and the 1150 wavelet coefficients comprising
the training set data for Plant Group. (1 = Plant Group 11, 2 = Plant Group

12, and 3 = Plant Group 13).

Feature selection was performed to identify wavelet coefficients characteristic
of the profile of each plant group. The pattern recognition GA identified
informative wavelet coefficients by sampling key feature subsets, scoring their
PC plots, and tracking those plant groups/and or IR spectra that were difficult to
classify. The boosting routine used this information to steer the population to an
optimal solution. After 200 generations, the pattern recognition GA identified 9
wavelet coefficients whose PC plot showed clustering (see Figure 8) of the IR
clear coat paint spectra on the basis of plant group.

To assess the predictive ability of the 9 wavelet coefficients identified by the
pattern recognition GA, a validation set of 42 IR spectra was used. IR spectra
from the validation set were projected directly onto the PC plot developed from
the 379 IR spectra and the training set and the 9 wavelet coefficients identified
by the pattern recognition GA. Figure 9 shows the projection of the validation set
samples onto the PC map of the training set data. All validation set samples are
located in a region of the map with clear coats from the same Plant Group.
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Figure 8. PC plot of the two largest principal components of the 379 training set
samples and 9 wavelet coefficients identified by the pattern recognition GA (1 =

Plant Group 11, 2 = Plant Group 12, 3 = Plant Group 13).

Figure 9. Validation set samples projected onto the PC plot of the data defined
by the 379 wavelet transformed clear coat IR spectra of the training set and
the 9 wavelet coefficients identified by the pattern recognition GA. (1 = Plant
Group 11, 2 = Plant Group 12, and 3 = Plant Group 13, A = Plant Group 11
(validation), B = Plant Group 12 (validation), C = Group 13 (validation)).
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Linear discriminant analysis (25) was also used to classify the 379 wavelet
transformed IR spectra in the training set. The training set data were divided into
3 classes on the basis of plant group. Linear discriminant analysis was used to
develop a classifier to separate the clear coats by plant group. A discriminant
developed from the 9 wavelet coefficients identified by the pattern recognition GA
achieved a classification success rate of 100% for the training set. To further test
the predictive ability of these 9 coefficients and the discriminant associated with
them, the validation set of 42 IR spectra of clear coat paint samples was employed.
Again, a classification success rate of 100% was achieved for the IR spectra in the
validation set. The results obtained from the LDA study are consistent with the
results obtained using PCA.

For each plant group, a search prefilter was developed to discriminate the
automotive paint samples by assembly plant. Table 2 lists the assembly plants
and subplants comprising Plant Group 11, which consists of four subplants
(Bramalea/Brampton, Dodge Main, St. Louis, Toledo) and a plant subgroup
consisting of three assembly plants (Belvidere, Saltillo and Toluca). Saltillo,
Toluca, and Belvidere were combined into a subplant group because the average
spectra of the Belvidere, Saltillo and Toluca assembly plants were similar.

Table 2. Assembly and Subplants Comprising Plant Group 11

Plant Training Validation

7110 (Belvidere + Saltillo + Toluca plants) 80 13

1002 (subplant of Bramalea/Brampton) 13 1

1010 (subplant of Toledo) 14 1

1103 (subplant of Dodge Main) 19 2

1109 (subplant of St Louis) 30 2

Figure 10 shows a plot of the two largest principal components of the 156
samples comprising the training set for Plant Group 11 and the 31 wavelet
coefficients identified by the pattern recognition GA. Each clear coat is represented
as a point in the PC plot. Four subplants (Bramalea Brampton, Dodge Main,
St. Louis, and Toledo) form distinct clusters in this PC plot whereas the plant
subgroup comprised of Saltillo and Toluca overlap with Belvidere, forming a
larger plant subgroup. Projecting the validation set samples assigned to Plant
Group 11 onto the PC plot showed that each projected validation set sample is
located in a region of the PC plot with samples from the same assembly plant or
subplant.

Table 3 lists the assembly plants or subplants comprising Plant Group 12,
which consists of one assembly plant (Bloomington), one subplant (Dodge Main)
and one plant subgroup consisting of three subplants (Bramalea/Brampton, St.
Louis and Toledo), and two assembly plants (Sterling Heights and Windsor).
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Bramalea/Brampton, St. Louis, Toledo, Sterling Heights and Windsor were
combined to form a plant subgroup because their average spectra were very
similar.

Figure 10. Validation set samples (indicated with P at end of class label)
projected onto the PC plot of the data defined by the 156 paint samples
comprising Plant Group 11 (training set) and the 31 wavelet coefficients

identified by the pattern recognition GA. (1 = subplant of Bramalea/Brampton, 2
= subplant of Toledo, 3 = subplant of Dodge Main, 4 = subplant of St Louis, 5
= plant subgroup containing Belvidere, Saltillo and Toluca, A-E = validation

(A corresponding to 1, B corresponding to 2, etc.)).

Table 3. Assembly and Subplants Comprising Plant Group 12

Plant Training Validation

8182 (subplant of Bramalea/Brampton +
Sterling Heights + subplant of St. Louis +

subplant of Toledo + Windsor)

110 15

1001 (Bloomington) 33 3

1003 (subplant of Dodge Main) 13 1

Figure 11 shows a plot of the two largest principal components of the 157
samples comprising the training set for Plant Group 12 and the 29 wavelet
coefficients identified by the pattern recognition GA. Each clear coat is represented
as a point in the PC plot. Bloomington and the Dodge Main subplant were well
separated from each other and the plant subgroup. Projecting the validation set
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samples assigned to Plant Group 12 onto the PC plot shows that each projected
validation set sample is located in a region of the PC map with samples from the
same assembly plant, subplant, or plant subgroup.

Figure 11. Validation set samples (indicated by P at end of class label) projected
onto the PC plot of the data defined by the 157 paint samples comprising

Plant Group 12 (training set) and the 29 wavelet coefficients identified by the
pattern recognition GA. (1 = Bloomington, 2 = subplant of Dodge Main, 3 =
plant subgroup containing subplant of Bramalea/Brampton, Sterling Heights,
subplant of St. Louis, and Windsor, A-C = validation (A corresponding to 1, B

corresponding to 2, C corresponding to 3).

Table 4 lists the two assembly plants comprising Plant Group 13 for the
development of the search prefilter for assembly plant. The pattern recognition
GA was not able to identify a set of coefficients from the wavelet transformed IR
spectra that could differentiate Jefferson North from the Newark assembly plant.
To better understand the reasons for this lack of success, principal component
analysis was performed on both the Newark and the Jefferson North assembly
plants. Clustering correlated to the production year of the vehicle was observed for
the Newark assembly plant (see Figure 12). For this reason, Newark was divided
into two subplants. Again, we were not able to identify wavelet coefficients that
could solve this three-way classification problem (Jefferson North versus Newark
subplant 2000-2002 versus Newark subplant 2002-2006). However, we observed
during the course of this GA run that Jefferson North clustered in two distinct
groups on the basis of production year. One cluster consisted of Grand Cherokees
(2000 and 2006) and Commodores (2006) and the other cluster consisted of
Grand Cherokees, Cherokees, and Commodores (2001-2006). Furthermore, one
of the Jefferson North clusters merged with a Newark subplant. For this reason,
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the three class study was reconfigured to take into account these subplants (see
Table 5).

Figure 13 shows a plot of the two largest principal components of the 64
samples comprising Plant Group 13 and the 3 wavelet coefficients identified by
the pattern recognition GA for the training set. Every subplant or plant subgroup
is well separated from each other in the plot. Projecting the validation set samples
assigned to Plant Group 13 onto the PC plot showed that each projected validation
set sample is located in a region of the PC map with samples from the same plant
subgroup or subplant.

Table 4. Assembly Plants Comprising Plant Group 13

Plant Training Validation

Jefferson North 34 3

Newark 30 3

Figure 12. Plot of the two largest principal components of the clear coat paint
spectra from the Newark assembly plant. Two distinct sample clusters are evident

in the plot.
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Table 5. Assembly and Subplants Comprising Plant Group 13

Plant Training Validation

406 (subplant of Jefferson North + subplant
of Newark)

42 3

1104 (subplant of Jefferson North) 11 2

1106 (subplant of Newark) 11 1

Figure 13. Validation set samples (indicated by P at end of class label) projected
onto the PC plot of the data defined by the 157 paint samples comprising Plant
Group 13 (training set) and the 3 wavelet coefficients identified by the pattern
recognition GA. (1 = subplant of Jefferson North, subplant of Newark. 2 =
subplant of Jefferson North, and 3 = subplant of Newark, A-C = validation (A

corresponding to 1, B corresponding to 2, C corresponding to 3)).

A summary of the results obtained for the 42 validation set samples is shown
in Table 6. All validation set samples were correctly classified by the Chrysler
search prefilters at both the Plant Group and assembly plant level.
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Table 6. Chrysler Search Prefilters Validation Sample Results

Validation
Sample

Assigned Plant
Group

Assigned Plant(s) Correct
Plant

1 11 1103 1103

2 11 1109 1109

3 12 1102 1102

4 12 1002, 1008, 1009, 1012, 1108, 1110 1012

5 12 1002, 1008, 1009, 1012, 1108, 1110 1110

6 12 1001 1001

7 12 912 912

8 11 1000, 1007, 1011 1011

9 12 1102 1102

10 11 1000, 1007, 1011 1007

11 11 1000, 1007, 1011 1000

12 13 1104 1104

13 12 1002, 1008, 1009, 1012, 1108, 1110 1108

14 11 1000, 1007, 1011 1007

15 13 1004, 1006 1006

16 13 1004, 1006 1006

17 11 1000, 1007, 1011 1000

18 12 1102 1102

19 11 1000, 1007, 1011 1007

20 11 1109 1109

21 11 1000, 1007, 1011 1011

22 13 1104 1104

23 11 1002 1002

24 12 1002, 1008, 1009, 1012, 1108, 1110 1110

25 11 1103 1103

26 11 1000, 1007, 1011 1007

27 11 1000, 1007, 1011 1011

28 12 1002, 1008, 1009, 1012, 1108, 1110 1008

29 12 1003 1003

30 12 1002, 1008, 1009, 1012, 1108, 1110 1008

31 12 1003 1003

Continued on next page.
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Table 6. (Continued). Chrysler Search Prefilters Validation Sample Results

Validation
Sample

Assigned Plant
Group

Assigned Plant(s) Correct
Plant

32 11 1000, 1007, 1011 1011

33 13 1106 1106

34 13 1004, 1006 1004

35 11 1000, 1007, 1011 1011

36 11 1000, 1007, 1011 1007

37 11 1000, 1007, 1011 1000

38 12 1003 1003

39 12 1002, 1008, 1009, 1012, 1108, 1110 1012

40 12 1002, 1008, 1009, 1012, 1108, 1110 1008

41 12 1003 1003

42 11 1010 1010

Search Prefilter for Automotive Manufacturer

As the goal of this study is to demonstrate proof of concept, not to develop
a field deployable system, the search problem was intentionally made more
challenging through selection of samples from the same automotive manufacturer
within a limited production year range. This tested the capability of the search
prefilters to differentiate between similar but nonidentical IR spectra. To use
the Chrysler search prefilters in an automated library search system, it would be
necessary to develop a search prefilter to differentiate clear coats by automobile
manufacturer. To demonstrate that Chrysler automotive clear coats can be
discriminated from those of other manufacturers, a search prefilter was developed
to discriminate Chrysler clear coats from those of GM and Ford. For this study,
1206 IR spectra of clear coats (425 GM, 421 Chrysler, and 360 Ford) within a
limited production year range (2000-2006) were employed. To develop this search
prefilter, the 1206 IR spectra were divided into a training set of 1164 clear coats
and a validation set of 42 Chrysler clear coats previously used in the Chrysler
search prefilter study. All IR spectra were smoothed using a Savitzky-Golay
filter (4th order polynomial, 17 point window) and then wavelet transformed
using a Symlet6 mother wavelet at the 8th level of decomposition prior to pattern
recognition analysis. Figure 14 shows a PC plot of the 1206 IR spectra of the
training set and the 39 wavelet coefficients identified by the pattern recognition
GA to differentiate clear coats by automobile manufacturer. Each paint sample is
represented as a point in the PC map of the data (1 = GM, 2 = Chrysler, and 3 =
Ford). Chrysler, GM, and Ford clear coats can be readily differentiated from each
other in the PC plot.
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Figure 14. PC plot of the data defined by the 1183 paint samples (training set)
and the 53 wavelet coefficients identified by the pattern recognition GA. (1 = GM,

2 = Chrysler (training set), 3 = Ford)

To assess the predictive ability of the 39 wavelet coefficients identified by the
pattern recognition GA, we chose to map the 42 Chrysler clear coat IR spectra
from the validation set directly onto the PC map developed from the 1164 training
set samples and the 39 wavelet coefficients identified by the pattern recognition
GA (see Figure 15). Every validation set sample was correctly classified, i.e. each
projected Chrysler sample was projected in a region of the map with clear coats
from the same manufacturer.

A 3-layer neural network (39-3-3) trained by back propagation (26) was also
used to classify the 1164 wavelet transformed IR spectra comprising the training
set. A discriminant developed from the 39 wavelet coefficients identified by the
pattern recognition GA achieved a classification success rate of 100% for the
training set. To further test the predictive ability of this network, the validation
set of 42 Chrysler clear coats was employed. Again a classification success rate of
100% was achieved for the IR spectra comprising the validation set. The results
from the network analysis were consistent with the results obtained from principal
component analysis. Evidently, features in the IR spectra of clear coats correlated
to automobile manufacturer can be identified by the pattern recognition GA. This
suggests that a search prefilter can be developed to discriminate Chrysler clear
coats from those of other automotive manufacturers. When used in conjunction
with Chrysler search prefilters, it should be possible to identify the assembly plant
of a Chrysler vehicle from a paint chip or paint smear recovered from a crime
scene.
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Figure 15. Validation set samples projected onto the PC plot of the data defined
by the 1183 paint samples (training set) and the 39 wavelet coefficients identified
by the pattern recognition GA. (1 = GM, 2 = Chrysler (training set), 3 = Ford, C

= Chrysler (validation set))

Library Searching

To extract information about the vehicle model or line from its IR spectrum,
the cross-correlation library search algorithm was used to identify the IR spectrum
most similar to the unknown in the set identified by the Chrysler search prefilters.
During this phase of the study, each spectrum in the validation set was vector
normalized and compared to library spectra using the region from 668 to 1891 cm-1

and 2856 to 3675 cm-1. The first one hundred and fifty points (399 to 667 cm-1)
and the last one hundred and seventy (3676 to 4000cm-1) were omitted because
of noise. The region of the spectrum corresponding to absorption by the diamond
transmission cell was also omitted.

The results from the cross-correlation library searching algorithm for the
42 validation set samples are summarized in Table 7. The top five hits from
the cross-correlation library searching algorithm for each validation set sample
were compared to the top five matches obtained for each validation set sample
identified by OMNIC, a commercial IR library search algorithm considered by
many workers in the field as the industry standard. For this study, OMNIC was
configured using correlation for the search type and Happ-Genzel for apodization
as this set of conditions yielded the best results. Library search results for OMNIC
are also summarized in Table 7. Clearly, the prototype pattern recognition library
system (search prefilters and the cross-correlation library searching algorithm)
outperformed OMNIC. For the six validation set samples misclassified by cross
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correlation, the PDQ library did not have an IR spectrum of the corresponding
model and line for one sample, two of the validation samples were comparatively
poor matches to their correct library samples, and the remaining three missed
validation samples were similar to their correct library sample, but were more
similar to other (incorrect) library samples.

Table 7. Results from Library Search for Validation Samples

Library Searching Method Correct Top
5 Matches

Total
Validation
Samples

Cross-Correlation 36 42

OMNIC
1206 GM, Ford, and Chrysler IR spectra

comprising the library

28 42

Conclusion

The prototype IR library search system for the PDQ database is able to
differentiate between similar but nonidentical FTIR spectra. The use of search
prefilters increases both the selectivity and accuracy of the search by eliminating
spectra from the search that are not from the same assembly plant(s). The
prototype system is directly targeted to enhance current approaches to data
interpretation in automotive forensic paint examinations and to aid in evidential
significance assessment, both at the investigative lead stage and at the courtroom
testimony stage.

Information derived from searches using the prototype library search system
can serve to quantify the general discrimination power of original automotive
paint comparisons encountered in casework, and further efforts to succinctly
communicate the significance of the evidence to the courts.
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Chapter 9

Net Analyte Signal (NAS) for Selection
of Multivariate Calibration Models and
Development of NAS Sample-Wise Target

Calibration Model Attributes

Jonathan Palmer and John H. Kalivas*

Department of Chemistry, Idaho State University, Pocatello, Idaho 83209
*E-mail: kalijohn@isu.edu

Common approaches to multivariate calibration such as
multiple linear regression (MLR), partial least squares (PLS), or
ridge regression (RR) require a model selection process (tuning
parameter selection). Selection often involves evaluating only
the cross validation prediction errors, but assessing multiple
criteria is more robust. With multiple model quality indicators,
trade-offs between the model indicators can be used to identify
acceptable models. Guidelines to assist model selection can be
formed with net analyte signal (NAS) assessment measures. By
using spatial relationships between calibration model vectors
and NAS related components, a geometric NAS construct
can be formed. Presented in this paper are NAS attributes
derived from the NAS construct. The potential of some of these
measures to guide selection of RR and PLS models is studied
using near infrared and nuclear magnetic resonance sample
sets. Sample-wise NAS target model regression approaches are
proposed.

Introduction

In multivariate calibration, various algorithms are employed in seeking a
solution to the general equation

© 2015 American Chemical Society
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where y is anm × 1 vector of known responses (a physical or chemical property of
interest, often analyte concentration) form reference samples,X is anm × nmatrix
of n measured variables, b is the n × 1 regression model vector to be estimated,
and e is the n × 1 vector accounting for normally distributed random noise with
mean zero and covariance σ2I with I being the n × n identity matrix (1–3). The
model in Equation 1 is typical for spectroscopic data and in these situations, the
variables are typically wavelengths.

The task of regression model formation is generalized as

where the + sign denotes a generalized inverse and the hat symbol over b indicates
estimated values. Once the model is formed, it can then be used to predict
responses for a set of new samples by .

Common algorithms to estimate the regression vector b in Equation 1
include partial least squares (PLS), ridge regression (RR), a variant of Tikhonov
regularization TR), multiple linear regression (MLR), and principal component
regression (PCR), but there are others. These calibration processes vary depending
on respective generalized inverses used in Equation 2 and the corresponding
tuning parameters involved.

Many processes are available for tuning parameter selection with evaluation
of prediction errors from a cross validation (CV) process being commonplace.
However, work has recognized potential issues with just prediction error as the
sole indicator of model quality as well as development of alternatives (3–11).

The concept of net analyte signal (NAS) has been used in the chemistry
literature in numerous ways including a preliminary assessment of an NAS figure
of merit for model selection (6). Evaluated in this paper are additional geometric
components of the NAS construct with application towards model tuning
parameter selection as well as a calibration approach based on sample-wise NAS
target modeling. For the sample-wise target modeling, the NAS for each new
unknown sample is regulated as a target in the regression processes in an attempt
to better balance the selectivity/sensitivity tradeoff in forming the model for that
particular sample. The paper concludes with suggestions towards incorporating
the new NAS attributes in an ensemble approach based on the sum of ranking
differences (SRD) (9) to select models consistent across multiple NAS attributes.

Net Analyte Signal (NAS)

The fundamentals of NAS are well described (12–18) and only a brief
overview is provided here. The NAS hyperdimensional geometry is the crux of a
model selection algorithm as well as the NAS measures evaluated in this paper.
For simplicity however, discussion focusses on a distilled three dimensional
analogy of the NAS geometry. The underlying foundation of this geometric
construct is the set of representative non-analyte spectra (spectra without the
analyte also known as the interferent spectra) designated N and depicted as the
two dimensional plane shown in Figure 1.

222

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

9

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 



Figure 1. The N space depicted as a two dimensional plane analog with sample
vector x and its associated projections into ( ) and orthogonal ( ) to N.

Recent work has noted two common definitions of NAS (14). The strictest
definition designates NAS as that part of a measured spectrum due to the analyte
of interest that is orthogonal to the non-analyte components making up the rest of
the sample spectrum. The orthogonal NAS vector is computed by projecting the
sample spectrum x orthogonal to N using

where the subscript symbol denotes that is the orthogonal NAS vector, Vk
represents the n × kmatrix of k selected loading vectors obtained from the singular
value decomposition (SVD) of the N (N = USVT) and I is the n × n identity
matrix. Under this definition, the reliability of NAS is entirely dependent upon
the quality (comprehensiveness) of N. Any non-analyte component missing from
N will manifest into as a false positive NAS characteristic. In the noise free
case, it has been shown that the PLS regression vector, up to normalization, is the
NAS vector (17). It should be noted that for an improved NAS vector, the x should
first be projected into the relevant calibration space (15).

The orthogonal definition of NAS essentially forces the algorithm to exclude
certain characteristics of non-analyte spectra that may be surreptitiously useful
for prediction, perhaps due in part to significant spectral overlap with the analyte
spectrum. In other words, the model vector direction for the selected tuning
parameter may not be completely orthogonal to the non-analyte space and not
resemble the orthogonal NAS vector (17–21) thereby reducing selectivity. As a
result, there is a gain in sensitivity (6).

A flexible description of NAS can be made in an attempt to counter the strict
orthogonality constraint. Redefining NAS as the portion of a sample spectrum
useful for prediction (14) allows inclusion of spectral variations that may aidmodel
formation and hence, prediction accuracy, regardless of the degree of presupposed
NAS association to the analyte or non-analyte. In an effort to achieve this oblique
or semi-orthogonal NAS, an additional parameter was tested to control the degree
of orthogonality when forming by

where ρ is a scalar in the range of zero to one and the absence of the symbol
indicates that may not be orthogonal to the N (21, 22). When ρ = 1, =
and when ρ = 0, = x and no projection is made. Controlling the degree of
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orthogonality set by ρ alters the vector direction of relative to N. This becomes
more apparent by defining

the net non-analyte signal (NnAS) contained within the sample (the projection of
x into the plane of N). The NnAS vector can be substituted into Equation 4 to
obtain showing that by reducing ρ from one, can contain some
non-analyte information. Shown in Figure 1 is the projection with ρ = 1 forming
.
The angular freedom brought by ρ allows the NAS vector to extract useful

information from N conferring value to the prediction process while adjusting
the selectivity/sensitivity tradeoff. In practice however, the proper degree of
projecting x is not known a prior and hence, ρ should ideally be optimized in
order to obtain the NAS most useful for prediction on a sample-wise basis,
a difficult task. However, it has been shown that the magnitude and direction
of (determined from Equation 2 based on some tuning parameter value)
relative to an N does reveal information useful for prediction in terms of the
selectivity/sensitivity tradeoff (6). This relationship is further studied in this
paper for tuning parameter selection in the global sense (one model for multiple
samples) and in the local sense (a unique model for each sample).

Comparison of the ratio based on respective Euclidean 2-norms
(L2 norms symbolized by ) for the NAS/NnAS ratio, provides a rudimentary
estimate of a signal to noise ratio within the sample from an orthogonal NAS
perspective.

The method of Equation 4 is the focus of this chapter and net analyte
preprocessing (NAP) is not studied. For NAP, two orthogonal projections are used.

The first estimates N by orthogonalizing X to y using .
This projection is followed by orthogonalizing X to the estimated N by a
projection similar to Equation 4. The first orthogonal projection in NAP is
comparable to orthogonal signal correction (OSC) (18, 23, 24).

NAS Measurers for Global Model Selection

Selection of candidate global models and hence tuning parameters, proceeds
by comparison of NAS geometric relationships. Global models are used to
predict future samples until said models are no longer functional due to changes
in measurement conditions. These NAS measures are based on angles and
Euclidean distances measured among geometric relationships within the NAS
construct (spatial relations between analyte and non-analyte components). The
size and orientation of these measures change as tuning parameters are adjusted,
revealing information relevant to the tradeoff between selectivity and sensitivity.

Figure 2 shows a possible situation for a model vector from a calibration set
using Equation 2 relative to an N.
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Figure 2. A possible model vector relative to the N and its associated
projections into ( ) and orthogonal ( ) to N. The angle between and

is labeled β.

An estimated model vector contains information related to the NAS vector
pointing, in principle, in the same direction as , the model vector orthogonal

to the N computed by . Note that there are many directions
the model vector can actually point while still maintaining the same angular
relationship with N defined by the angle β in Figure 2. A similar statement is true
for the direction of .

Projection of into the N forming represents the non-NAS
component of the model vector and characterizes that part of not in the direction

of , i.e., . From the NAS geometry in Figure 2, the
angular relationship between and can be expressed as

describing the degree of orthogonality between and N and hence, model
selectivity. Because cos β is determined by the tuning parameter value for the
calibration modeling method (as well as k), it seems natural to treat zero as the
ideal target value and select a model(s) with a small cos β value. Specifically,
keeping largely orthogonal to N should cause much of the non-analyte
information in a sample spectrum to be zeroed out when multiplied by the
regression vector. This interaction stems from writing x as (assuming a linear
Beer-Lambert law type relationship)

where ya and ka respectively represent the analyte concentration and pure
component analyte spectrum at unit concentration, the 1 is a vector of ones with as
many ones as there are spectra in N, and r denotes the random spectral noise. The
non-analyte spectra in N represent all components of x not due to the analyte such
as pure component interferent spectra, spectra characterizing instrumental and/or
environmental sources affecting x such as scatter, baseline shifts, background,
temperature, etc. The spectra in N are scaled by the respective quantities in yN.
Prediction of ya, signified by , is obtained by multiplying x in Equation 7 by a
model vector expressed by
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In order to obtain from Equation 8, three conditions must be fulfilled.
Specifically, , , and . In most situations, not all three
conditions can be simultaneously satisfied. As noted following, the level of
success depends on the sample specific situation.

Neglecting the noise component r, Equation 8 reveals that predictions
are based on the sum of the products and . When the model vector is
orthogonal to the N, then for each spectrum in N

where θ is the angle between an n and and hence, there are no contributions from
N to the predicted analyte value . The predicted analyte value is now based on
how well Equation 10 holds

where φ is the angle between ka and . Any deviation of the model vector from
orthogonality toNwill contribute to the predicted value in Equation 8. In previous
work with simple simulated spectral situations, conditions expressed in Equations
9 and 10 were found to be true (6). However, with a real data set, the conditions
were not generally met and the final predicted values for the analyte did depend
on the degree of orthogonality between and N.

Deviations from orthogonality can be characterized by cos β in Equation 6.
However, focusing only on cos β to select a tuning parameter was found to not fully
assess the selectivity/sensitivity tradeoff to obtain acceptable predictions errors
with the selected model (6). Instead, better model selection for previously studied
data sets was achieved by selecting those models yielding a comparatively small

value in combination with favorable values for other critical measures of
model quality such as small values for and cos β. Results showing model
selection with these measures are expanded upon in this paper with additional
development and application to sample-wise target models as described next.

Augmenting Ridge Regression (RR) with Sample-Wise NAS
Target Modeling and Localized NAS Diagnostics

Employing RR is a common method of solving the ill-posed mathematical
problem that confounds multivariate calibration. With RR, the matrix of X
typically contains far more columns (measured variables) than rows (distinct
samples). The resulting rank deficiency of XTX causes issues when attempting to
take the corresponding inverse. By adding a controlled amount of diagonalization
to an otherwise singular calibration matrix XTX, RR facilitates solution of the
inverse operation by
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where I is the n × n identity matrix and the scalar λ is an adjustable value that
controls the weight applied to the identity matrix to stabilize the inverse operation
and simultaneously, penalize the magnitude of b as noted in the minimization
expression

with . Expression 12 functions as the least squares criterion for

The two terms in Expression 12 represent measures of bias and variance
respectively. Attempting to minimize the two values invokes a method of
trade-off analysis.

Explored in this paper are attempts to exploit sample-wise NAS specific
information to target the RR algorithm toward the NAS vector of a new unknown
sample x. The method developed in this paper differs from that previously
published (7, 25), albeit the goal is the same, i.e., targeting a prior known vector
for the model. For a particular sample spectrum, this sample-wise orthogonal

NAS target would be . Because y is not known for a new sample, a tuning
parameter ζ was used to replace y to control the magnitude of the target NAS.
Additionally, since the orthogonality of relative to N may not necessarily be the
best for prediction of a particular sample, the solution is computed by

thus targeting the output of RR ( ) directly towards NAS information by adhering
to the minimization expression

for the set of equations

In using Equation 14 as the solution to Expression 15, there are essentially
four tuning parameters. The λ and ζ parameters are obvious, but also needed are
ρ and k to calculate using Equation 4. Without prior knowledge or empirical
evidence, it is difficult to decide on particular parameter values. In theory, all four
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parameters should be specific to each sample depending on the amount of analyte
in the sample relative to the non-analyte and how well N spans the non-analyte
signal specific to the sample. Described next is the NAS geometry studied to aid
in selecting these tuning parameters. The method of PLS can be used by removing
the λ term and using LVs instead.

Assuming that assesses how much of lies in the N space, a reasonable

local sample-wise analog of would represent the portion of that lies within
a subspace of N specific to each sample. Equation 5 defined as the NnAS for a
sample. The vector should ideally distinguish the local subspace of N for that
sample. Projection of onto this vector can then be considered as that portion of
related to the local non-analyte information identified and computed by

Figure 3 illustrates the projection. The vector L2 norm expresses the localized
relationship between and . Similarly, a sample-wise analog of the angle β

between and can be obtained.

Figure 3. Projection of onto forming as the portion of the model vector
that lies in the local non-analyte space specific to sample x.

This angle will be referred to as α with the intent to guide the process of
sample-wise model selection through minimization of cos α computed by

with the goal of orthogonalizing the two vectors. In addition to studying cos α,

trends for are investigated as tuning parameters vary.
From NAS theory and the model selection goals for this paper, it seems

reasonable to minimize the inner product between and by seeking a small

value for . This can be equivalently expressed by
showing that there are multiple ways in which the inner product can be small.
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Tradeoffs in Model Attributes and L-Shaped Curves

Requiring to be orthogonal to either N (for a global model) or (for a
sample-wise local model) might seem ideal, but this forced orthogonality can be an
unfair constraint and themodel vector is actually regulated by the tuning parameter
to have a direction and magnitude that is most useful for prediction. Thus, it is
prudent to analyze the tradeoff between orthogonality and other key diagnostic
measures opposing orthogonality that maintain prediction error assessment value.

Analysis of tradeoffs betweenmodel attributes has been shown to aid in model
selection (3, 5–11) and the NAS-derived fitness measures can be used to enhance
this process. For example, the tradeoff between RMSEC and the model vector
L2 norm is well characterized (7–10). Recall from the previous discussion that
RMSEC directly quantifiesmodel bias while themodel vector L2 norm assesses the
potential prediction variance. Because the two diagnostic measures are in direct
competition with each other (the bias/variance tradeoff), a plot of one against the
other is expected to form an L-shaped curve. Model selection can be performed
by choosing the model closest to the origin at the point of maximum curvature.
This area resides in the corner region of the L-shaped curve. However, model
selection from the standard L-curve can be somewhat subjective. Despite this
subjectivity, the standard L-curve by itself has been used to obtain models with
sufficient prediction accuracy. This paper evaluates the NAS measures used as
selection criteria in conjunction with standard L-curves. As shown in Results and
Discussion section, the NAS measures also tend to form L shaped curves when
plotted similarly.

Experimental

Calibration

The NAS model measures are obtained from leave multiple out cross
validation (CV) using 100 random splits with 70% for calibration and 30% for
validation. Calibration sets are mean centered and the corresponding validation
set is mean centered to the calibration set mean. The N matrix is mean centered
to the mean of N. Mean values of the NAS and model indicators from the CV
are reported. The singular value decomposition (SVD) is used for obtaining
the V eigenvectors from respective data set specific N matrices. Assessing the
NAS measures requires determination of an appropriate value for k (number of
eigenvectors to retain for projections relative to N). Data set specific values for k
are such that over 98% of the variation in N is retained and values used for k are
reported in respective data set descriptions. Eighty λ tuning parameters are used
for RR with specific values given in respective data set descriptions. Similarly,
the maximum number of PLS latent variables (LVs) evaluated are provided in
respective data set descriptions. The sample-wise NAS target method is tested
with RR and PLS using only the temperature data set. Fifty ζ and ρ values are
used with actual values described in the temperature data set section. In this case,
no CV is used as described in the temperature data set section.
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Temperature Data

A three component temperature data set comprising 22 samples of varying
mole fractions of ethanol, water, and isopropanol measured over 200 wavelengths
from 850 to 1049 nm was analyzed using ethanol as the analyte (26, 27). The data
set is available at five temperatures and 30 ºC was used. Three of the 22 samples
are pure component spectra as shown in Figure 4a. The two pure component
interferent spectra and one blank sample (containing only water and isopropanol)
are used for N. Two eigenvectors from the SVD of N are used for respective
projections relative to N. These three non-analyte samples are not part of the
calibration set. The pure component analyte spectrum was also not used for
calibration. The remaining spectra are used two ways. One consists of a non-CV
situation based on the literature with 13 and 6 samples in the calibration and
validation sets, respectively. This data split was used for the sample-wise NAS
target method. The 50 ζ and ρ values used for this process ranged from 0 to 1
in increments of 0.0204. The second way the data set was used involves the CV
process previously described in the Calibration section. In both cases, the 80 λ
values increased exponentially from 1.0 × 10-4 to 20.

Figure 4. Pure component spectra for (a) temperature data with ethanol (solid),
isopropanol (dot-dash), and water (dot); (b) NMR with propanol (solid), butane

(dot-dash), and pentanol (dot); and (c) the corn data set.

Nuclear Magnetic Resonance Data

The nuclear magnetic resonance (NMR) data set comprises 231 samples
of a three component mixture of propanol, butanol, and pentanol measured
from 0.6425 ppm to 3.8431 ppm at 2.3 × 10-4 ppm increments for 14,000
response variables (27, 28). The spectral region was reduced from 1.4814 ppm to
1.6099 ppm using every fifth response for a total of 113 responses. This region
was chosen because of the significant overlap among the signals for all three
components shown in Figure 4b. Propanol is presented as the analyte. Sample
concentrations for each component ranged from 0 to 100 %. In addition to pure
component spectra, each component has 21 blank samples with respect to the
other two components. For each component tested as the analyte, the respective
two pure component interferent spectra and five blank samples are removed from
the 231 sample set. The five blank and two pure component interferent spectra are
used to construct respective analyte specific N matrices and five eigenvectors are
used for respective projections relative toN. The seven samples for eachN ranged
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from 0, 5, 25, 50, 75, 95, and 100 % of each non-analyte component. The 80 λ
values increased exponentially from 100 to 8.0 × 105 for all three components.

Corn Data

The near infrared (NIR) spectral data set consists of 80 corn samples measured
across 700 wavelengths from 1100 to 2498nm at 2nm intervals (27, 29). The data
set is reduced to 100 wavelengths from 1302 nm to 2490 nm at 12 nm increments
as plotted in Figure 4c. The set includes samples measured from three different
instruments and the mp5 instrument is used. Concentration information as percent
composition is provided for moisture, oil, protein, and starch. Because there are
no pure component spectra or blank samples, spectral differences between two
spectra with the same analyte amount within a concentration tolerance are used.
For moisture, there are two pairs of spectra that exactly match in moisture content
to three decimal places. The remaining samples used forN consist of three sample
pairs that differ in moisture content by 1 × 10-3, one pair differing by 3 × 10-3,
and one pair by 5 × 10-3, for a total of seven difference spectra. The maximum
tolerances used to form N matrices for oil, protein, and starch are 3.0 × 10-3, 3.0
× 10-3, and 9.0 × 10-3, respectively. Each analyte had an N with seven difference
spectra. In each case, five eigenvectors from the SVD ofN are used for projections.
The 80 λ tuning parameters increased exponentially from 1.0 × 10-8 to 37 for
moisture, oil, and starch and from 1.0 × 10-8 to 74 for protein.

Results and Discussion
Global Model Tuning Parameter Selection

NMR Data

Previous work had evaluated the NAS attributes using RR for the temperature
data (6) and as with that data set, the NMR data has all pure component spectra and
non-analyte spectra to select from and form a data set represented by N. Plotted in
Figure 5a are the inner product between N and PLS model vectors with the same
for RR in Figure 5b. From these two figures, it is observed that Equation 9 is
not absolute and inner products are not always equal to the target zero value for
most models. Displayed in Figure 5c are the inner products between the analyte
pure component propanol spectrum and the RR and PLS model vectors revealing
that this inner product approaches the target value of 1 for Equations 10 and 8.

Figure 5d presents the plot for RR and PLS. Local minima of these plots
identify RR model 15 with tuning parameter value 491.68 and the PLS 12 LV
model as potential models to be selected. From the corresponding RMSECV
plots in Figure 5e, the selected models in Figure 5d have acceptable bias/variance
tradeoffs relative to the underlying selectivity/sensitivity tradeoffs characterized
by the cos β plots for RR and PLS in Figure 5e. Thus, as with the temperature data

in previous work (6), the local minimum in a plot of is able select acceptable
tuning parameter values as a single criterion. This observation was true for the

231

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

9

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 



other NMR analytes. In the previous temperature data study with ethanol as the

analyte, models tended to be selected by with greater selectivity at a sacrifice
to sensitivity. With propanol, the opposite seems to be occurring with selectivity
being sacrificed for sensitivity.

A trend observed across the analytes for this data set is that the minimum of

occurs at the point on the RMSECV curve where no appreciable improvement

in RMSECV values can be obtained by further increasing . This trend is also
observed for the temperature data, the corn data set (next), and other data sets.

Corn Data

The corn data does not have any pure component or non-analyte spectra
to use for N. In this case, spectra with constant or nearly constant analyte are
differenced thereby removing the analyte contribution leaving non-analyte related
spectra. Using these spectra for N as described in the Experimental section, the
plots in Figure 6 characterize the NAS measures for moisture as the analyte.
For RR and PLS, the respective models at the larger model vector L2 norms are
fairly orthogonal to each of the spectra in N, but not exactly. The plot of cos β
in Figure 6e shows that relative to the complete space of N (as defined by the
five eigenvectors used to span N from the SVD of N), these model vectors with

greater values are quite orthogonal to N. This angular relationship indicates
that sensitivity is being sacrificed for improved selectivity. The greater selectivity

at the larger model vector L2 norms is confirmed by the plot of in Figure
6c where the local minima are used to select tuning parameter values for RR and
PLS (ridge value and LV, respectively). The local minima of these plots identify
RR model 40 with tuning parameter value 4.63 × 10-4 and the PLS 15 LV model
as potential models for selection. From the RMSECV plots in Figure 6d, these
models produce acceptable prediction errors balancing the bias/variance tradeoff.
The global RMSECV minima in Figure 6d occur at RR model 37 with tuning
parameter value 1.98 × 10-4 and 21 LVs for PLS.

Sample-Wise NAS Target Modeling

The temperature, NMR, and corn data sets were all studied for sample-wise
NAS target modeling using Equations 14 – 16. Results were similar for all three
data sets and presented are the temperature data results.

Using NAS indicators for global modeling requires selecting two tuning
parameters (ridge value for RR or LVs for PLS and the number of eigenvectors
from N to form the NAS measures). In that work, the number of eigenvectors was
set for at least 98% of the variation in N being captured and the NAS attribute

was used to select the model tuning parameter. For sample-wise NAS target
modeling, these same two tuning parameters need to be determined.
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Figure 5. NMR data RR and PLS plots of NAS attributes and RMSECV against
model regression vector L2 norms. Numbers on plots are either the RR model
number or the number of PLS LVs. The RR λ values increase in order with RR
model numbers. (a) and (b) contain inner products between N and RR and PLS
model vectors, respectively, with (dot-dash) and (dot) being the pure component
interferent spectra for butanol and pentanol, respectively. For (c) – (f), plot
symbols for RR and PLS are (dot-dash) and (solid) respectively. (c) inner
products between the analyte propanol pure component spectrum and model

vectors. (d) plots with vertical lines marking selected RR (dash) and PLS
(solid) models at local minima. (e) RMSECV. (f) cos β.
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Figure 6. Corn data RR and PLS plots of NAS attributes and RMSECV against
model regression vector L2 norms. Numbers on plots are either the RR model
number or the number of PLS LVs. The RR λ values increase in order with RR
model numbers. (a) and (b) are, respectively, inner products between N and PLS
and RR model vectors. For (c) – (e), plot symbols for RR and PLS are (dot-dash)

and (solid) respectively. (c) plots with vertical lines marking selected RR
(dash) and PLS (solid) models at local minima. (d) RMSECV. (e) cos β.
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In addition, values for the tuning parameters ρ (for the degree of orthogonality
in the projection relative toN) and ζ (for the magnitude of the target vector) need to
be selected. Using the same number of eigenvectors (two) as in the global model
selection study, the effects of varying ρ and ζ on the NASmeasures and predication
errors were studied.

Shown in Figures 7 a and b are images of RMSEV values at two ρ values while
ζ and the RR tuning parameter λ vary. At ρ = 1, the RMSEV image in Figure 7b
shows localized regions with small RMSEV values while the ζ and λ values vary.
This complexity suggests the difficulty expected in selecting values for λ, ρ, and ζ
at a fixed number of eigenvectors. However, as ρ decreases from 1 to 0.003, the
RMSEV values become essentially independent of ζ, i.e., the variation of λ is the
same across the ζ values in Figure 7a. This independence of ζ is further confirmed

from graphical analysis of the images for the minimization term in
Expression 15 shown in Figures 7c and d. The images and plots in Figures 7a-d
deviate very little as ρ goes to zero. At these small values for ρ, there is effectively
no projection and the NAS target is the validation sample itself. The algorithm is
apparently focusing on the NAS most useful for prediction and not necessarily the

orthogonal NAS. Local NASmeasures and cos α, (the local analogies to
and cos β ), have the same characteristics as Figure 7a-d. Analogous results were
obtained for PLS by replacing the RR tuning parameter with LVs. At the small ρ
values, consistent L-curves at each ζ value can be obtained. The goal was for these
L-curves to correlate with prediction error in the corner region as with L-curves
for global models allowing selection of λ independent of ρ and ζ. However, these
L shaped curves do not always correlate with prediction errors of each validation
sample for selection of λ or LV values (true for the sample in Figure 7). Thus,
using the sample-wise NAS target approach was not feasible in the current format
due to the inconsistencies of the results.

When ζ was fixed to specific values and λ and ρ were allowed to vary, results
similar to those in Figure 7were obtained for RR (as well as for PLS). Additionally,
as ζ converges to zero, the sample-wise NAS target modeling process reduces to

RR or PLS as the case may be. In this situation, the local minima in can be
used to select the global model as in the previous section.
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Figure 7. Temperature data RR images of model and NAS measures for ρ =
0.003 on the left and ρ = 1 on the right. The λ and ζ values increase in order of
respective axis indices (tuning parameter numbers). (a) and (b) are RMSEV. (c)

and (d) are . (e) and (f) are .
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The difficulty in using a sample-wise NAS target approach probably resides
in the need for a local non-analyte set of sample, i.e., the discrete relationships
of each new sample relative to the global N must be reconciled. Perhaps it is no
surprise that NAS model selection methods should begin to fail when attempting
to seek localized answers from an algorithm that is based on global non-analyte
information. An analogy is local calibration based on selecting calibration samples
best for a particular new sample. Increased model prediction accuracy can be
obtained compared to a global model by matching the new sample to a subset
of calibration samples closely matrix matched to the new sample. Similarly, for
sample-wise NAS target modeling to function in a local capacity for a certain
sample, the space of N should be selected to closely match the new sample as well
as any environmental and instrumental conditions present when the new sample is
measured. In the current study, N represents an aggregate of known types of non-
analyte information anticipated in all new samples. However, not every sample
can be expected to contain all non-analyte information spanned by N. Therefore,
the projection of x into the full N space represents an unrealistic interpretation of
the sample-wise non-analyte signal . Consequently, the angle α between b and

is actually the angle between the model vector and a pseudo-global non-analyte
space that probably does not represent the actual non-analyte space of any one
sample. This conclusion is based on observations that some samples seem to
perform extremely well under the sample-wise NAS target approach while others
are quite difficult to predict accurately, such as in Figure 7.

Advancing NAS Modeling

It was hoped to be possible to select sample-wise models by reducing the
number of tuning parameters through setting the ρ tuning parameter to essentially
zero in order to obtain L shaped curves correlated to sample-wise prediction errors
as a function of λ. Unfortunately, this worked for some samples, assumed to be
appropriately characterized byN, but not for other samples. Hence, the conclusion
that in order to work best, one needs a localized N particular to each new sample.
However, it may still be possible to select sample-wise models using a global
basedN by using a process that allows multiple tuning parameters to be optimized
simultaneously. In recent work, the method of sum of ranking differences (SRD)
was used to select respective RR and PLS tuning parameters based on an ensemble
of multiple model fitness criteria (9). Recent work has advanced SRD to select two
tuning parameters (30). Such an approach is being investigated for selecting values
for λ, ρ, and ζ as the number of eigenvectors vary, but even this may prove to be
to much.

Because the best is not known, a study was undertaken to estimate it
in a post global model analysis by projecting x onto each respective tuning

parameter based RR and PLS using . If the model vector is
completely orthogonal to N, then ρ =1 and , the orthogonal NAS of x.
Substituting for in Equation 4 allows solution for the corresponding value
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of ρ. Specifically, and defining , the solution

for ρ becomes . Plotted in Figure 8 are the RR and PLS mean values

of ρ across all calibration samples against the respective for the NMR data.

At the models selected by the local minima of , the values are ρRR = 0.986
and ρPLS = 0.990 indicating that the selected models are nearly orthogonal to N.
This agrees with the plot in Figure 5f. The plots in Figure 8 also show that as the

sensitivity degrades with increasing values of , the selectivity (orthogonality)
of increases. Similar results to Figure 8 were obtained for the NMR validation
data as well as for the corn and temperature data.

Figure 8. NMR calibration data for RR (dot-dash) and PLS (solid) plots of ρ
against model regression vector L2 norms. Numbers on plots are either the RR
model number or the number of PLS LVs. The RR λ values increase in order

with RR model numbers.

Current work also involves adjusting the sample-wise target concept to an
NAS global target model using SRD for model selection. Specifically, rather than

using the sample-wise target as in Expression 15, the target can
be used where denotes the mean NAS vector at unit concentration where the

mean is computed from the projection operation for each
calibration sample with Vk defined as before. In this way the ζ tuning parameter is
removed and a calibration model is sought in the mean NAS direction. With SRD,
it will also be possible to use the individual NAS vectors rather than the mean
vectors. An uncertainty is if the N matrix should only be used to generate the
NAS measures clarifying the degree of orthogonality (model direction) for model

238

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
00

9

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 

http://pubsdc3.acs.org/action/showImage?doi=10.1021/bk-2015-1199.ch009&iName=master.img-140.jpg&w=194&h=167


selection or whether it should also be included in calculation of the regression
vector. For example, the minimization expression

could be solved. Expression 19 without the third penalty target term has been
used in previous work (21, 31). There are many vectors that satisfy the second
penalty term (orthogonality to N for model direction). Including the third term
for a specific target vector direction may assist the algorithm to compute a
more acceptable solution with improved tradeoffs. Such work is ongoing in our
laboratory.

In this paper, the non-analyte matrix N was always measured at the same
measurement conditions as the calibration samples for forming a global model.
Recent work has shown thatN can also span a set of sample conditions (secondary
conditions) differing from those for the calibration samples in X (primary
conditions) (21, 31). This approach is also under investigation with the new NAS
measures and NAS target regression methods.
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Chapter 10

Adaptive Regression via Subspace Elimination

Joshua Ottaway, Joseph P. Smith, and Karl S. Booksh*

Department of Chemistry and Biochemistry, University of Delaware,
Newark, Delaware 19716

*E-mail: kbooksh@udel.edu

The two primary goals in the creation of any multivariate
calibration model are effectiveness and longevity. A model
must predict accurately and be able to do so over an extended
period of time. The primary reason models fail when applied
to future samples is the presence of uncalibrated interferents.
Uncalibrated interferents represent any change in the future
samples not described by the original calibration set. Most
often uncalibrated interferents result from the addition of
chemical constituents, changes to analytical instrumentation,
and changes to environmental conditions. Presented within this
chapter is a novel algorithm, Adaptive Regression via Subspace
Elimination, for handling uncalibrated chemical interferents via
an adaptive variable selection approach. Results are presented
for synthetic Near Infrared (NIR) and Infrared (IR) data.

Introduction

Multivariate calibration models are a widely accepted means of quantitatively
determining analyte properties, such as pH, oxidation state, and most commonly,
concentration (1, 2). In spectroscopy, calibration models consist of a set of
observed spectra with known reference values. These observed spectra describe
the calibration space as well as the set of all instrumental, environmental, and
chemical effects captured by the spectra. These calibration spectra and associated
reference values often require extensive laboratory time and expense to collect.
Due to this time and expense, many methods for updating an existing model to
predict future spectra with uncalibrated interferents have been developed (3–11).

Calibration maintenance studies have been the subject of review articles
(12). These methods typically fall into two broad categories: robust model

© 2015 American Chemical Society
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building and model updating (13–23). The goal of any robust modeling approach
is to construct the calibration set such that it spans all possible future chemical,
environment, and instrumental interferents that may appear in future samples.
This proves impractical in the majority of situations for two reasons. First, it
is extremely difficult to predict all the possible interferents that may appear in
future samples. Second, even if all possible future interferents were known, the
calibration set would have to be constructed containing all said interferents in a
sufficiently robust experimental design. Thus, the size of such a calibration set
could quickly expand well past a practical size.

The other broad category of calibration maintenance is to update the
calibration set. This can be accomplished by collecting or creating a large
number of new samples containing the uncalibrated interferent and subsequently
augmenting the original calibration set. Alternatively, updating the calibration
set can be done by collecting a few samples and weighting those appropriately
when augmenting the calibration set. These approaches have been well reviewed
in literature but suffer the drawback of requiring reference values for those new
samples (12).

Additionally, both strategies suffer from an expanding ‘interferent space’.
Including more interferents in the experimental design decreases the net analyte
signal (NAS). From the standpoint of NAS, an optimal experimental design would
include only the interferents present in a future sample. Decreasing the NAS
degrades the noise handling properties of the multivariate model. When the NAS
becomes sufficiently small, the ability to reliably estimate properties of future
samples is lost.

The goal of this new calibration maintenance process, Adaptive Regression
via Subspace Elimination (ARSE), is not to update a calibration set but rather
eliminate the contribution of the uncalibrated interferent. By determining the set
of variables in the test spectrum that have a contribution from the uncalibrated
interferent, those variables can be eliminated. This updated calibration set, which
eliminated the contaminated variables, can be reanalyzed to construct a new
calibration model. Effectively, ARSE is trading bias for an increase in variance.
The variables most biased by the uncalibrated interferent are identified and
eliminated. The remaining subset of variables has consequently diminished the
capacity to average the effects of random errors.

Mathematics and the Approach

The ARSE algorithm is based on the assumption that any uncalibrated
interferent (UI) will contaminate a subset of the variables in a future sample. For
instance, if Sc represents the multivariate space described by the variables in the
calibration set, then a future contaminated sample, xf, can be described as the set
of variables that lie within Sc, xfa, and the set of variables that would lie within Sc
if not for the contribution of the UI, xfb, as seen in equation 1.
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This then becomes a combinatorics problem. If, for example, the calibration
set is described by 40 variables and a new sample has an uncalibrated interferent
contaminating 30 of those variables, one 10-variable subspace that is not
contaminated by the interferent exists out of 8 * 108 possible 10-variable
subspaces. Not only is this computationally impractical for an exhaustive search,
but it is also dependent on knowledge concerning exact amounts of contaminated
variables.

However, in many spectroscopic applications, observed interferent spectra
have contributions at many spectroscopically informative wavelengths in a
calibration model. Furthermore, the probability of finding a range of wavelengths
that are uncontaminated is low. For this reason, methods like secured principal
component regression (s-PCR) (24) have not seen much practical utility.

To overcome the problems of a large search space with too few
uncontaminated variables, ARSE was preformed following transformation of
all spectra into the wavelet domain. As described in Goswami et al. this is a
frequency and phase transformation that preserves all the information contained
within the spectra (25). This transform significantly increase the number of
variables unique to the analyte of interest with respect to the uncalibrated
interferent (Figure 1). ARSE was then preformed on a finite number of random
subsets of variables. This allowed the computational issues to be avoided while
also evaluating the usefulness of each variable in combination with many different
variables.

Figure 1. Ratio of analyte of interest pure component to uncalibrated interferent
pure component for data set 1 in both the wavelength and absolute-valued

wavelet space
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The goal of ARSE is to determine the variables described by the calibration
set with high predictive ability while having minimal contribution from the UIs.
The presences of a UI can be identified through the projection error,

In equation 2, x represents a future, possibly contaminated sample with m
variables, I represents an m x m identity matrix, and V represents the eigenvectors
of the calibration space. The projection error for any k-variable subspace of the
calibration space can be equivalently determined by selecting any k of the m
variables of x. The identity matrix becomes k x k, and the eigenvector matrix, V,
must be recalculated from just the k variables in the calibration set. This distance
outside of the calibration space is then a measure of the contamination within
each set of k variables.

The net predictive ability of a k-variable subspace is determined by calculating
the prediction error for a set of k-variables,

Where y represent the calibration reference values, represent the partial least
squares (PLS) calculated estimate of the reference values, and n represents
the number of samples in the calibration set. A separate multivariate model is
generated for each unique subspace analogous to moving window partial least
squares regression (26), except the set of variables employed is not contiguous
and is in the wavelet domain.

After many k-variable subspaces are analyzed, the average projection and
prediction errors can be calculated for each variable based on the observed
projection and prediction errors of subspaces when each variable is employed.
This, therefore, gives a measure of how contaminated each variable is by an
uncalibrated interferent and how informative each variable is with respect to
determining the analyte of interest in the calibration space.

After a large set of potential subspaces have been analyzed, the average
projection and prediction errors are used to establish the best subset of variables
to use to predict the sample with UI. This is accomplished by rank ordering these
two errors and then examining the union of the two ordered sets. The union of
the two sets can be expanded until the desired number of samples are present:
for example both errors may need to be expanded until the best performing 30
variables, by each metric, are present before the union of the two sets contains five
variables. Once the desired number of variables are present in the union, those
variables can be selected to build a model and predict the possibly contaminated
test sample. The algorithm in its entirety can be seen below in Figure 2.

This approach can then be repeated for each sample in the set of samples with
UI. By analyzing each uncalibrated sample independently, the calibration model
can be rebuilt to fit the needs of each specific sample. This allows the algorithm
to compensate for a set of samples that may have different interferents in different
samples.
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Figure 2. Diagram of the ARSE algorithm

Experimental

Software

Programs for new methods were written in Matlab 8.4 (The Mathworks,
Natick, MA). PLS programs were used from the PLS toolbox version 7.95
(Eigenvector Research, Inc., Manson, WA).

Data Sets

Data Set 1

Synthetic mixture spectra were made from pure component spectra obtained
from the EPA Vapor-Phase IR Library. The pure component spectra were
measured at 4 cm-1 resolution from 450 to 4000 cm-1. The pure component
spectra (Figure 3) were then used to create 40 calibration samples containing three
species and 25 test samples containing the original three calibration species plus
an uncalibrated interferent. Concentrations were randomly determined values
between 0 and 1, and the concentration of the uncalibrated interferent in the test
samples was entirely independent of the concentration of the analyte of interest.
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Figure 3. Pure component spectra for data set 1

Data Set 2

Synthetic mixture spectra using pure component UV-VIS spectra were
measured in-house on a HP 8452a UV-VIS with 2 nm resolution from 190 to 820
nm. The pure components (Figure 4) consist of three dyes, Eosin Y, green food
coloring (Blue 1 and Yellow 5), and Rhodamine B were used for the calibration
set, where Eosin Y was treated as the analyte of interest. The test set consisted
of two dyes, Methyl Red and Quinaldine Red, to act as different uncalibrated
interferents. These were then used to create a calibration set containing 60
samples and two different 40 sample test sets with each test set containing one
of the uncalibrated interferents. As with the previous set, concentrations were
randomly distributed values from 0 to 1, U(0,1) and the concentration of the
uncalibrated interferents were independent of those of the analyte of interest and
also followed a U(0,1) distribution.

Data Preprocessing and Algorithm Parameters

All spectra were wavelet transformed using a symlet 8 wavelet, keeping both
the detail and approximation coefficents of the wavelet transform to potentially
increase the number of variables that are unique to the calibration set. All spectra
and corresponding reference values were mean centered before any PLS model
was built. The algorithmwas allowed to run for 1 million iterations while selecting
k = 6 random variables for each iteration. The ProjE (eq. 2) and PredE (eq. 3)
were calculated for the 6-variable subspace. Preliminary results show that these
parameters workwell, but may not be optimized for general use nor optimal for any
particular data set. Further optimization and validation of the algorithm parameters
is an ongoing project.
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Figure 4. Pure component spectra for data set 2

Results and Discussion

Data Set 1

The synthetic IR data are perfectly estimated by a three factor PLS model
when no noise or uncalibrated interferent are present for the calibration model
construction in either the wavelength or wavelet space. When estimating
concentrations in the presence of uncalibrated interferents, analysis in the wavelet
and wavelength spaces perform equivalently. In the wavelength space, estimating
the analyte concentration from the 25 spectra containing an uncalibrated
interferent presents a root mean squared error of prediction (RMSEP) of 0.2738
for samples with a mean nominal concentration of 0.5 (Table 1). These 25
samples have a mean error of -0.2406 with a standard deviation of 0.1227 based
solely on the distribution of added uncalibrated interferent. In the wavelet
space, estimating the analyte concentration from the 25 spectra containing an
uncalibrated interferent presents a RMSEP of 0.2786 for samples with a mean
nominal concentration of 0.5 (Table 2). These 25 samples have a mean error of
-0.2503 with a standard deviation of 0.1248 based solely on the distribution of
added uncalibrated interferent. The distribution of prediction errors is shown in
Figure 5.

The application of ARSE performs significantly better on the wavelet
transformed data than on the wavelength-space data. This is due to a lack
of interferent-free variables in the wavelength space. Applying ARSE in the
wavelength space does not improve the RMSEP with either a 6-variable or
12-variable model (Table 1). The RMSEP converges to the RMSEP without
ARSE as more variables are included.
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Table 1. Results for data set 1 with no noise in wavelength space

Method Mean Error STD RMSEP

PLS -0.2460 0.1227 0.2738

ARSE plus PLS 6 variables -1.3785 0.6875 1.5342

ARSE plus PLS 12 variables -0.7455 0.3718 0.8298

Table 2. Results for data set 1 with no noise in wavelet space

Method Mean Error STD RMSEP

PLS -0.2503 0.1248 0.2786

ARSE plus PLS 6 variables 0.0470 0.0234 0.0523

ARSE plus PLS 12 variables 0.0470 0.0234 0.0523

Figure 5. Histogram of errors for noiseless data set

Applying ARSE to the noiseless data reduces the RMSEP by a factor of 5.3
for both the best 6-variable and best 12-variable ARSE models (compare rows 2
and 3 to row 1 in Table 2). The absolute mean error and the standard deviation of
observed errors are also reduced by a factor of 5.3. That is to say the PLS model
is 530% more biased without ARSE than following the application of ARSE. The
distribution of errors following ARSE are virtually identical for the 6-variable and
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12-variable ARSE treatments (Table 2). The bias shift from negative to positive
is a consequence of which subspace is kept. This should not be interpreted as an
‘overcorrection’ by ARSE. Upon selection of variables with minimal uncalibrated
interferent contribution, there was a greater net overlap with positive weighted
variables in the regression vector than that of negatively weighted variables in the
regression vector when the PLS model was rebuilt within the retained subspace.

To further demonstrate the efficacy of this new algorithm, two levels of
normally distributed noise, N (0, 1), were added to the calibration and test data
sets. The noise levels were scaled to be 1% and 5%of the net spectral intensity
of each variable in the wavelength space. The spectra were then converted from
wavelength space to wavelet space prior to ARSE application.

The addition of 1% and 5% noise does not significantly impact the
performance of the PLS model prior to treatment by ARSE. The RMSEP, mean
bias, and standard deviation of observed biases are all within 0.2% of the values
obtained by PLS analysis of the noiseless data. (Compare Table 3, first row to
Table 2, first row). The errors of analysis are dominated by the bias derived from
the uncalibrated interferent not the added random spectral noise.

Table 3. Results for data set 1 with noise added in wavelet space

Method 1 Percent Noise 5 Percent Noise

Mean
Error STD RMSEP Mean

Error STD RMSEP

PLS -0.2497 0.1247 0.2780 -0.2458 0.1268 0.2754

ARSE plus
PLS 6
variable

0.0448 0.0733 0.0846 0.0001 0.2028 0.1987

ARSE plus
PLS 12
variable

0.0332 0.0604 0.0679 0.0111 0.1518 0.1491

A Monty Carlo noise sensitivity analysis highlights the impact of random
errors on the ability of ARSE to determine robust calibration models. With 1%
normally distributed noise, both the 6 variable and 12 variable ARSEmodels show
improvement on both accuracy (~3x-4x) and precision (~2x) (Table 3, Figure 6).
With 5% normally distributed noise, the tradeoff between accuracy and precision
using ARSE becomes evident (Figure 7). While a greater than 10x improvement in
accuracy is realized, the precision is degraded substantially. In this example, the 12
variable model yields a better precision without loss of accuracy than the 6 variable
model due to signal averaging, in which least 12 uncontaminated variables exist
in the wavelet space. In addition to signal averaging across more variables, where
appropriate, loss in precision can be recovered by averaging replicate samples.
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Figure 6. Histogram of errors for 1% noise data set

Figure 7. Histogram of errors for 5% noise data set

Ultimately, the accuracy and precision of ARSE is based on which variables
are selected. Of interest is the effect on variable selection by the noise present.
Each test set sample was replicated 20 times with different realizations of
1% and 5% noise. Due to similarities in results, only the 1% noise will be
discussed. Interestingly, although each sample was analyzed independently
of all other samples, the ARSE algorithm under-corrected samples with low
analyte concentration and over-corrected samples with high analyte concentration
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(Figure 8). Observing the frequency usage of each variable (Figure 9) in the
12-variable model shows that 5 variables were employed at least 90%of the
time and 11 variables where employed at least 50% of the time. When the 12
most commonly employed variables for the 5 lowest concentrations are used
to form a model applied to all samples, a similar under-correction is observed;
when the 12 most commonly employed variables for the 5 highest concentration
are used to form a model applied to all samples, a similar over-correction is
observed. Consequently, it is concluded that the under-/over-correction problem
is a function of the variables chosen, and is not intrinsic to the PLS model or the
constructed data. Disaggregating the data shows that the major difference among
the variables selected for the high concentration and low concentration samples
is a simple shift in the variables being chosen, i.e. for high concentration variable
937 is chosen and for the low concentration variable 940 is chosen.

Figure 8. RMSEP as a function of number of variables used. Inset histogram of
the percentage a variable is chosen

A more accurate and precise model can be realized with a different selection
of variables. From the histogram of employed variables (Figure 8), models were
constructed using the k most frequently selected variables and applied to all the
samples, each with 20 different realizations of noise (Figure 9). The RMSEP was
determined for the 20 replicates of all 25 samples from Figure 9 as a function of
number of variables used (Figure 8). Clearly, more accurate and precise models
can be obtained by choosing variables in a manner that is more robust to random
noise. Based on the observed RMSEP for different calibration subspaces in Figure
8, judicious selection of variables through an improvedARSE algorithm could lead
to a further 50% improvement in robustness against uncalibrated interferents.
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Figure 9. Predicted vs True Y values for repeated 1% noise samples

Data Set 2

The UV-Vis absorption data set represents a more challenging scenario for
ARSE. Not only are there no analytically useful uncontaminated variables in the
wavelength space, there are few analytically useful uncontaminated variables
in the wavelet space. When building PLS models across all variables in the
presences of Quinaline Red, RMSEPs of 0.4872 and 0.4953 in the wavelet and
wavelength space were obtained, respectively; when in the presence of Methyl
Red, RMSEPs of 0.1841 and 0.1887 in the wavelet and wavelength space were
obtained, respectively.

Employing ARSE to the data with Quinaline Red as the uncalibrated
interferent, a 4.2x improvement is realized for the 6-variable model and 3.8x
improvement is realized for the 12-variable model (Table 4, Figure 10). The
ARSE models also presents a 1.9x improvement in model accuracy and 2.4x
improvement in model precision for the 6-variable model and 3.8x improvement
in model accuracy and 4.0x improvement in model precision for the 12-variable
model. When examining the data with Methyl Red as the uncalibrated interferent,
a slight increase in RMSEP (1.14x) is observed for the 6-variable model; however,
a 1.8x improvement is observed for the 12-variable model (Table 6, Figure 11).
The accuracy improves for both the 6-variable and 12-variable model, whereas
the precision only improves for the 12-variable model. This degradation of the
precision for the 6-variable model results in the higher overall prediction error
when compared to the PLS model.

As with the IR data, two levels of normally distributed noise, N (0, 1), were
added to the calibration and both test data sets. The noise levels were scaled to be 1
percent and 5 percent of the net spectral intensity of each variable in thewavelength
space. The spectra were then converted from wavelength space to wavelet space
prior to ARSE application.
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Figure 10. Histogram of prediction errors with Quinaldine Red as uncalibrated
interferent and no noise

Figure 11. Histogram of prediction error with Methyl Red as uncalibrated
interferent and no noise

Similarly, the addition of noise had no significant effect on the PLS model.
The RMSEP is within 0.1% of the noiseless value for the 1% noise data set and
is exactly the same to 4 decimal places for the 5% noise data set (Compare row
1 Tables 4 and 5, and row 1 Tables 6 and 7). The model precision and accuracy
also vary by, at most, 0.1% when comparing the noiseless data to the data sets with
additional noise. This again demonstrates that the error in the model is inherent

253

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
01

0

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 

http://pubsdc3.acs.org/action/showImage?doi=10.1021/bk-2015-1199.ch010&iName=master.img-013.jpg&w=275&h=191
http://pubsdc3.acs.org/action/showImage?doi=10.1021/bk-2015-1199.ch010&iName=master.img-014.jpg&w=277&h=191


to the presence of the uncalibrated interferent rather than any additional spectral
noise.

Table 4. Data set 2 with Quinaldine Red as uncalibrated interferent in
wavelet space

Method Mean STD RMSEP

PLS -0.3976 0.2852 0.4872

ARSE plus PLS 6
variable 0.2139 0.1184 0.1184

ARSE plus PLS 12
variable 0.1039 0.0712 0.1254

Table 5. Data set 2 with Quinaldine Red as uncalibrated interferent in
wavelet space with added noise

Method 1 Percent Noise 5 Percent Noise

Mean
Error STD RMSEP Mean

Error STD RMSEP

PLS -0.3969 0.2885 0.4869 -0.3988 0.2834 0.4872

ARSE plus
PLS 6
variable

0.1303 0.2481 0.2774 1.1586 1.0178 1.5337

ARSE plus
PLS 12
variable

0.9202 0.7289 1.1683 1.2792 1.1098 1.6844

WhenQuinaldine Red is the uncalibrated interferent, ARSE is able to improve
the RMSEP by a factor of 1.75x for a 6-variable model on the 1% noise data (Table
5). However, for both the 12-variable model on the 1% noise data and both models
on the 5% noise data, there is a significant increase in all three factors of merit.
This increase is due to the inherent difficulty of this data set. The difficulty of the
small number of analytically useful uncontaminated variables in this data set is
further complicated by the introduction of any noise.

Similarly to with Quinalidine Red, when Methyl Red is the uncalibrated
interferent ARSE is able to improve the RMSEP by a factor of 1.4x for the
6-variable model in the 1% noise data set (Table 7). Again, however, for the
12-variable model for the 1% noise data set and both models for the 5% noise
data set, there is a significant degradation in the prediction error, though less than
in the case of Quinalidine Red.
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Table 6. Data set 2 with Methyl Red as uncalibrated interferent in wavelet
space

Method Mean STD RMSEP

PLS -0.1570 0.0973 0.1841

ARSE plus PLS 6
variable 0.1460 0.1583 0.2139

ARSE plus PLS 12
variable 0.0685 0.0761 0.1016

Table 7. Data set 2 with Methyl Red as uncalibrated interferent in wavelet
space with added noise

Method 1 Percent Noise 5 Percent Noise

Mean
Error STD RMSEP Mean

Error STD RMSEP

PLS -0.1568 0.0971 0.1838 -0.1596 0.0992 0.1873

ARSE plus
PLS 6
variable

0.0848 0.1055 0.1344 0.2465 0.2648 0.3593

ARSE plus
PLS 12
variable

0.1917 0.1455 0.2396 0.2573 0.2703 0.3707

Conclusions

The results in this chapter show that a solution to the problem of uncalibrated
interferents in future samples exists in the form of determining uncontaminated
variables and subsequently re-building a model with just those variables. This
approach is not without obstacles that must be overcome. First is the creation
of variables that are both analytically relevant to the analyte of interest and
uncontaminated by interferents. Within this chapter, that was accomplished via
a symlet based wavelet transform. Future work will focus on analyzing other
possible wavelet families as well as wavelet preprocessing to eliminate irrelevant
variables prior to the application of ARSE.

Once appropriate variables are created, the obstacle becomes selecting those
variables. This work has shown that with an ARSE-like algorithm it is possible
to select variables and build a model that improves model accuracy with minimal
increase in model precision. However, the selection process must be further
modified to be more robust to the effect of sample to sample variation.
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Chapter 11

The Essential Aspects of Multivariate
Calibration Transfer
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The technical issues associated with multivariate calibration
transfer (or calibration transfer) for spectroscopic instruments
using absorption spectroscopy are addressed in this chapter.
Calibration transfer refers to a series of analytical approaches
or chemometric techniques used to attempt to apply a single
spectral database, and the calibration model developed using
that database, to two or more instruments, with retained
accuracy and precision. One may paraphrase this definition of
calibration transfer as, “calibration transfer means the ability
for a multivariate calibration to provide the same analytical
result for the same sample measured on a second (child)
instrument as it does on the instrument on which the calibration
model was created (parent instrument)”, as described in H.
Mark, and J. Workman, Spectroscopy 2013, 128(2), 1-9. There
are many technical aspects involved in successful calibration
transfer, related to the measuring instrument reproducibility
and repeatability, the reference chemical values used for the
calibration, the multivariate mathematics used for calibration,
and so forth. Ideally a multivariate model developed on a single
instrument would provide a statistically equivalent analysis
when used on other instruments following transfer.

© 2015 American Chemical Society

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
01

1

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 



Instrumentation Issues

Calibration transfer involvesmeasuring a set of reference samples, developing
a multivariate calibration, and transferring that calibration to other instruments
(1). The basic spectra are initially measured on at least one instrument (i.e., the
parent, primary, or Master instrument) and combined with the corresponding
reference chemical information (i.e., Actual or Reference values) for the initial
development of a multivariate calibration model. These models are applied and
maintained on the original instrument over time and are transferred to other
instruments (i.e., child, secondary, or transfer instruments) to enable analysis
using the child instruments with minimal intervention and recalibration. (Note
that the issue of calibration transfer disappears if the instruments are precisely
alike.) If instruments are the “same” then any one sample placed on any
spectrophotometer will predict or report precisely the “same” analytical result.
Since instruments are not precisely alike, and in fact are different from the
moment of manufacture, and they drift over time, the use of calibration transfer
techniques is often applied to produce the best attempt at calibration model or data
transfer with minimal variation across instruments. The discussion of calibration
transfer, from a purely chemometric and instrumentation standpoint, does not
address differences in reference laboratories used for the Y-block or reference
data. This is a separate problem not addressed within this chapter. However, from
a theoretical perspective, if instrumentation is identical and constant then the
same physical sample will yield the same predicted result when using the same
multivariate calibration.

In practice, the current state-of-the-art for multivariate calibration transfer is
to apply one or more software algorithms, and to measure physical standards on
multiple instruments. These standard spectra are used to align the spectra from
different instruments and to move (or transfer) calibrations from one instrument
to another. All the techniques used to date involve measuring samples on the
calibration instrument (i.e., parent), and the transfer instrument (i.e., child) and
then applying a variety of approaches to complete the transfer procedure.

Types of Spectrophotometers

Absorption-based spectrophotometers exist in several design types. There
are instruments based on the grating monochromator with mechanical drive,
grating monochromator with encoder drive, the Michelson interferometer in
various forms, dispersive gratings with array detectors, interference and linear
variable filter instruments with single detectors, linear variable filters with
array detection, MEMS based Fabry-Perot interferometers, Digital Transform
actuator technologies, Acousto-optic tunable filters (AOTF), Hadamard transform
spectrometers, laser diodes, tunable lasers, various interference filter types,
multivariate optical computing devices, and others. Calibration transfer from one
design type spectrometer to the same type and manufacturer is challenging, but
transfer of sophisticated multi-factor PLS models across instruments of different
design types is not currently well understood. The requirement of precise spectral
shapes across instruments requires more sophisticated spectral transforms than
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simple first-order X- (wavelength or frequency),Y- axes (photometric value),
and smoothing (lineshape simulation) corrections. Note that using a smoothing
function to simulate lineshape or resolution differences is not adequate, since
lineshape varies with wavelength, and smoothing functions may more closely
mimic spectral shapes in one wavelength region, yet cause greater differences
in other regions of the spectrum. Multivariate calibrations are developed for
many data dimensions and require delicate adjustments across multi-dimensional
spectral space to fit measured data precisely. The center wavelength, data spacing,
photometric response, photometric linearity, resolution, instrument line shape
and symmetry, and other parameters must be nearly identical for multivariate
calibrations to yield equivalent prediction results across different spectrometers
and different design types of spectrometers.

Common Calibration Transfer Practices
The most ubiquitous approach to calibration transfer involves applying an

existing PLSmodel to a transfer or child instrument using a bias or slope correction
for predicted results. In this procedure a set of 10 to 40 test or transfer samples
is measured on both the parent and child instruments, and the resulting analytical
results are “adjusted” on the child instrument using a bias and slope procedure
(i.e., linear regression) to best fit the child instrument results to those of the parent.
This process has been demonstrated to be ineffective at creating a parity between
results reported from both parent and child instruments over time. Some of the
mathematics of this approach are discussed in this chapter.

The second and third most used approaches to multivariate calibration
transfer involves the application of Direct Standardization (DS), and Piecewise
Direct Standardization (PDS) (2–5). These approaches are described in detail
with application descriptions, examples, and equations in reference (5). These
approaches are also often combined with small adjustments in bias or slope of
predicted values to compensate for small differences not accounted for by using
standardization algorithms. Note that the frequency with which standardization
approaches must be applied to child instruments is dependent upon the frequency
of calibration updates required and the spectral shape drift of the child instruments
with respect to the parent (or calibration instrument).

For the DS method, the test sample set is measured on the Parent and Child
instruments as typically Absorbance (A) with respect to wavelength (k). The
spectral data has k specific wavelengths. A transformation matrix (T) is used to
match the child instrument data (AC) to the Parent instrument data (AP). And so
Equation 1 demonstrates the matrix notation. Note that for DS a linear relationship
is assumed between the parent and child measurement values.

where AP is the parent data for the test sample set as an n x k matrix (n samples
and k wavelengths), AC is the child instrument data for the test samples as an n x k
matrix, T ̂ is the k x k transformation matrix, and E is the unmodeled residual error
matrix.
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The transformation matrix (T̂) is computed as Equation 2.

where AC+ is the pseudoinverse approximated using singular value decomposition
(SVD) of the n x k spectral data matrix for a set of transfer or standardization
samples measured on the child instrument, AP is the n x k spectral data matrix
for the same set of transfer or standardization samples measured on the parent
instrument. The transform matrix is used to convert a single spectrum measured
on the child instrument to be converted to “look” like a parent instrument spectrum.

For the PDS method, the DS method is used piecewise or with a windowing
method to more closely match the spectral nuances and varying resolution and
lineshape of spectra across the full spectral region, and there is no assumption
of linearity between the parent and child prediction results. The transformation
matrix is formed in an iterative manner across multiple windows of the spectral
data in a piecewise fashion. Many other approaches have been published and
compared, but for many users these are not practicable and have not been adopted
for various reasons; these methods are reviewed in reference (6). Note for
calibration transfer the alignment of the wavelength axis between instruments is
most critical since PLS assumes data channel (i.e., wavelength) integrity for all
spectral data.

If the basicmethods for calibration transfer do not produce satisfactory results,
the user begins to measure more samples on the transfer (i.e., child) instrument
until the model is basically updated based on the child instrument characteristics.
One might note that to date using the same sample set to develop an entirely
new calibration on a child instrument yields the optimum results for calibration
accuracy; however this is not considered calibration transfer per se; recalibration
would be a more precise term for this process. Imagine the scenario where a user
has multiple products and constituents and must check each constituent for the
efficacy of calibration transfer. This is accomplished by measuring 10-20 product
samples for each product and each constituent in order to compare the average
laboratory reference value to the average predicted value for each constituent,
and then adjusting each constituent model with a new bias value. This exercise
obviously results in a ponderous procedure; however this is less exasperating than
recalibrating each instrument using hundreds of samples for each product and
constituent.

Calibration Modeling Approaches to Transfer
Various methods have been proposed to produce a universal model, or a

calibration that is mostly robust against standard instrument changes as are
common to modern commercial instruments. These have been referred to as
robust models, or global models. In this case various experimental designs are
constructed to better represent the product, reference values, and instrument
calibration space to include typical changes and interferents that should be
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included within the model space for predicted values to be broadly applicable.
Using this approach one might design a detailed factorial experiment for the
composition of the learning or calibration set to include multiple variations
typically encountered during routine analysis. A list of some of these variations
may consist of: differences in pathlength, sample temperature, moisture content,
flow rate, particle size, interferent content, instrument type, constituent ratios,
sampling parameters, process or manufacturing conditions, and the like (7). These
approaches will work for a period until the instrument performance characteristics
drift or the product or constituent chemistry changes significantly. These types of
changes are expected and thus routine recalibration (i.e., model updating) would
normally be required as a standard procedure if any of the changes are considered
significant.

a. Standardization Methods

The most common method for calibration transfer using near infrared
spectroscopy involves measuring spectra and developing calibration models on
a parent or primary instrument, sometimes referred to as a “Master” instrument
and transferring a calibration using a set of transfer samples measured on a child
or secondary instrument (8, 9). It is commonly understood that the results of
calibration transfer often require a bias on the child instrument or a significant
number of samples measured on the child instrument to develop a suitable
working calibration. This practice most often increases the error of analysis on
the second instrument. There are multiple papers and standards describing the
statistical techniques used for analytical method comparisons on two or more
instruments, some of which are described in references (10–13).

b. Instrument Comparison and Evaluation Methods

One of the essential aspects for determining the efficacy and quality of
calibration transfer is to make certain the spectrometer instrumentation is
essentially identical, or as similar as possible, prior to the calibration transfer
experiment. There are many standard tests that are used to determine alikeness
between spectrophotometers. Eight basic tests are quite useful for characterizing
instrument measurement performance. These tests include: wavelength accuracy,
wavelength repeatability, absorbance/response accuracy, absorbance/response
repeatability, photometric linearity, photometric noise, signal averaging (noise)
tests, and the instrument line shape (ILS) test. If carefully conducted, these
experiments provide specific information for diagnosing mechanical, optical, and
electronic variations associated with basic design limitations, tolerance problems,
or implementation errors. The results of these tests provide objective data for
correcting and refining instrument repeatability and reproducibility. These tests
have been described in some detail within previous publications (14–17).
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The Mathematical Aspects of Calibration Transfer
The Basic Premises

A review of the application of chemometrics to spectroscopic methods and
practices have been described (18–20). Calibration for both quantitative and
qualitative methods have been discussed and reviewed and multi-way methods
have also been described in detail. To summarize, the process of multivariate
calibration transfer involves the following steps:

(1) a comprehensive set of teaching (or calibration) spectra are measured on
at least one instrument (i.e., the parent, primary, or Master instrument)
and combined with the corresponding reference chemical information
(i.e., Actual or Reference values) for the initial development of
calibration models. These models are maintained on the original
instrument over time and are used to make the initial calibration.

(2) The initial calibration is transferred to one or more additional instruments
(i.e., child, secondary, or transfer instruments) to enable analysis using the
child instruments with minimal correction, biasing, or other intervention.

(3) A set of transfer samples, representing a subset of the full teaching or
calibration set, is measured on the child instrument.

(4) The process of applying a standardization algorithm, such as DS or PDS,
is applied.

(5) Residual mean differences are biased and or slope corrected by regressing
the child to predict the parent instrument reported analytical values on the
transfer sample set.

For emphasis note that the issue of calibration transfer disappears if the
instruments are precisely alike. If the parent and child instruments are the “same”
over time and temperature conditions then one sample placed on any of these
instruments will produce precisely the “same” result using the same multivariate
calibration model. Since instruments are not alike from the time of manufacture,
and also change significantly over time, the use of calibration transfer mathematics
is often applied to produce the best attempt at model or spectral data transfer.

There is another critical factor that has sometimes been overlooked when
using absorption spectroscopy for analytical chemistry, that is, that spectroscopy
measures the weight per volume (or moles per volume) fractions of the various
components of a mixture. The reference values may be based on one of several
physical or chemical properties that are only vaguely related to the measured
volume fraction. These would include: the weight fraction of materials, the
volume percent of composition with unequal densities, the physical or chemical
residue after some processing or separation technique, the weight fraction of an
element found in a larger molecule (such as total nitrogen versus protein), and
other measured or inferred properties. The non-linearity caused by differences in
the volume fraction measured by spectroscopy and the reported reference values
must be compensated for by using specific mathematics for non linear fitting
during calibration modeling. This non-linear compensation during calibration
often involves additional factors when using partial least squares (PLS), or
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additional wavelengths when using multiple linear wavelength regression (MLR).
If the analyst is not using mass per volume fractions as the units for reference
values the nuances of instrumental differences will be amplified since the
spectroscopy is not necessarily directly or linearly measuring these other types
of concentration units.

In the process of transferring calibrations from a parent to a child instrument,
one may take four different fundamental strategies for matching the predicted
values across instruments. Each of these strategies varies in complexity and
efficacy. One may (1) adjust the calibration model (i.e., the regression or
b-vector), (2) the instrument as it measures spectra (i.e., the X and Y axes), (3)
the spectra (using various spectral transformations, such as matching X and Y
axes and apparent lineshapes via smoothing), or (4) adjusting the final predicted
results (via bias or slope adjustments). All of these methods have been applied
individually or in combination in an attempt to match the reported predicted
results derived from parent and child instruments. Ideally one would adjust all
spectra to look alike across instruments, such that calibration equations all give
the same results irrespective of the specific instrument used. This is the challenge
for instrument designers and manufacturers.

a. Instrument Correction

A basic instrument correction must be applied to align the wavelength
axis and photometric response for each instrument to make their measurement
spectra somewhat alike. This process will create spectra and measurement
characteristics that are more similar and repeatable. The correction (or internal
calibration) procedure requires photometric and wavelength measurement of
reference materials that are stable over time and can be relied upon to have
accurate and repeatable characteristics. It is of paramount importance that the
reference standards used to align the wavelength and photometric axes do not
change appreciably over time. Stable reference standards of known stability
and low uncertainty for measurand values may be used at any time to bring the
instrument alignment back to its original and accurate state for wavelength and
photometric registration. One may note that all spectrophotometers will change
over time due to lamp color temperature drift, mechanical wear of moving parts,
vibration, electronic component and detector aging; and variations associated
with the instrument operating environment, such as temperature, vibration, dust,
mechanical and optical fouling, and humidity.

b. Virtual Instrument Standardization

The concept of virtual instrument standardization has been reported to be
successful and was demonstrated commercially using high and low finesse etalons
and a laser crystal for instrument alignment (21, 22). This technology was limited
to a single instrument diode array design and used a proprietary set of special
materials and algorithms. These methods and material definitions were never
published in sufficient detail to replicate and thus the exact elements remain a trade
secret, except for information disclosed within an issued U.S. Patent (23).
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Comparing Results from Test Sets of Transfer Samples
For spectroscopic-based measurement using multivariate calibration, one

may compare the standard or reference concentrations for a set of samples to the
spectroscopic-based predicted values. One may also compare the response of the
parent Instrument to that of the child instrument. In making these comparisons
one may perform statistical tests for bias, correlation, and slope. A statistically
significant difference in bias should result in a change of the bias. A statistically
significant result in correlation or slope should result in a basic multivariate
recalibration, unless one can demonstrate that the differences between the
compared values have some real slope variation between them due to fundamental
scientific principles. A test for differences between parent and child instrument
predictions will indicate the similarity between instruments and the spectra
measured between parent and child systems.

a. Bias or Slope Adjustments of Predicted Results across Parent and Child
Instruments

A significant bias between parent and child predicted values on the same
test sample set is mainly caused by instrument measurement differences. Other
sources of significant bias changes between reference values and spectroscopy-
based predicted values are due to chemical or spectral interferences. These cause
significant bias in the measured analyte concentration due to the effect of another
component, property of the sample, or analytical measurement anomaly (24).

b. Bias (means) One-Sample t-Test between Parent and Child Instruments

The concept of mean differences (or bias) requires a test of significance to
determine whether a bias between mean values is meaningful. An appropriate
statistical test will reveal if the variation in the mean values (bias) between
sample sets of predicted values is within the expected random fluctuation for a
normally distributed population of measurements. The larger the sample set used
to test calibration transfer bias the more accurate is the estimate of the true bias
value. Thus, using 20 test samples would give a more accurate estimate of the
bias than 10 samples. The smaller the standard error of the mean, the greater the
confidence will be of the true bias value. The standard error of the mean is given
as the SEM (Equation 4) with an example demonstrating the use of 20 rather than
10 samples for bias testing. In this case, a more powerful estimate of the true
bias is demonstrated by a factor of √20/√10 = 1.41. This is true only if there is
no significant slope difference. Note: it is acceptable to make the statistically
significant bias correction even if there is a slope difference.

The statistical test used to determine bias significance is a simple parametric
one-sample t-test. For this test the average predicted mean value for a set of
samples on the parent instrument is computed, and compared to the set of predicted
values for the same sample set on the child instrument. In the case of NIR data,
we designate the mean NIR value for a set of reference samples measured on the
parent (i.e., calibration) instrument as X̅Parent (For this test only the mean value is
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required, not the individual analysis values). The mean NIR value for the same
set of reference samples as measured on the child (i.e., transfer) instrument is
computed as X̅Child. Then for this experiment the test hypotheses is as

The Standard Deviation for the child instrument (sChild) is computed using the NIR
predicted data on the measured set of samples as given in 3. Where y̅i is the mean
predicted value for the sample set for the child instrument; and yi are the individual
predicted values for the set of test samples for the child instrument.

Then the Standard Error of the Mean (SEM) is computed for the child instrument
NIR data as Equation 4.

This experiment tests whether the predicted value mean is statistically the
same for the parent and child instruments. There are many variations of testing
mean differences, but this is a basic test for comparing means when the sample
size of two groups is identical. This test determines whether the average predicted
values are statistically the same for the test set used. Note that the reference values
are not assumed to be known for the test set. For this t test statistic one is able to
compute the t-test for mean bias significance as Equation 5.

If this resulting t-test is greater than the t critical value for n-1 degrees of freedom,
the bias is significant and it should be changed. If the t value computed is less than
the critical value of t it is not significant and should not be changed. If the bias is
significant, the difference between the slope of each of the two sets of prediction
results are compared (i.e., parent versus child); or the correlation coefficients are
compared. Note that n in the case of statistical comparisons for bias and slope is
the number of samples in the test set, for this example, 20 samples.

c. Bias (means) Two-Sample t-Test between Parent and Child Instruments

The predicted values for the set of test samples is determined for both the
parent and child instruments in order to apply a parametric two-sample t-test. Note
we are using an identical number of samples for each bias test, so the sample
sizes for each test of the parent and child instruments are identical. There is no
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assumption that the reference values for the set of test samples are known. For this
test the mean NIR value for the set of reference samples measured on the parent
(i.e., calibration) instrument as X ̅Parent is computed. Then the mean NIR value for
the same set of test samples as measured on the child (i.e., transfer) instrument as
X ̅Child is computed. For this test the null and test hypotheses are the same as in the
one-sample t-test as

The Standard Deviations are computed for both the parent (sParent) and child (sChild)
NIR predicted data on the measured set of test samples as follows. Where x̅i and
y̅i are the mean predicted values for the test set for each instrument; and xi and yi
are the individual predicted values for the set of test samples for each the parent
and child instruments, respectively. The standard deviation calculation for each
instrument are given in Equations 6 and 7.

Next the t-test for mean bias significance is computed as Equation 8.

If this t-test value is greater than the t critical value for nc + np −2 degrees of
freedom, we know the bias to be significant (accept HA), thus the bias should
be changed. If the t value computed is less than the critical value of t it should
not be changed and is not significant (accept H0). If the bias is significant the
difference between the slope of the two lines should be tested, or a comparison of
the correlation coefficients should be made.

d. Comparing the Correlation Coefficients between Parent and Child
Instruments Using the (r-to-z transform) Significance Test

The slope should not be changed to adjust the predicted values following
calibration transfer. However the slope significance should be computed as an
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indication of a need to recalibrate the instrument using a new multivariate model
on the child instrument. For this test the correlation coefficients are compared for
the parent instrument and the child instrument for the same test set of samples; the
correlation here refers to Pearson’s r statistic.

For this test one computes the r-to-z transformation (aka Fisher’s z′ transform)
from the Pearson’s r correlation. The r-to-z transformation statistic is used to
compare two correlation coefficients to see if they are significantly different, such
as another correlation possibly obtained in the same or a similar experiment. As
an example, if the null hypothesis test is r = 1, it will indicate if the measured
correlation is significantly different from 1.

For comparing two correlation coefficients using parametric statistics, the
r-to-z transformation is used. This refers to the “r-to-z transformation” for
comparing two correlation coefficients, particularly when at least one r-value
does not equal zero. For this example case the null (H0) and test (HA) hypotheses,
respectively, are as H0: r=1, and HA: r<1 (or could be stated as r is not equal to 1).

For this question, use Equation 9 for Zobs in conjunction with Table 2 listing
the r to z transformation and the critical values for the t-distribution table (Table
1 gives the critical t values for any degree of freedom for different significant
levels). For a hypothetical example: given a correlation coefficient of rParent=0.999
(as representing the correlation coefficient obtained by regressing the parent
instrument predictions for a test sample set for time 1 (X) versus time 2 (Y), for
example, one week apart. (Compute the r-value and report it as rParent.) Next the
correlation is computed for the child instrument (rChild) using the samemultivariate
calibration and the same test samples on the Child instrument. (Compute the
r-value and report it as rChild.) The z observed statistic is then computed for this
correlation comparison to determine whether it is significantly different from
0.999 (the Parent instrument reference r value). To continue, if rChild is 0.992, the
test will be to compare 0.992 to 0.999 to see if they are statistically the same. For
this example, we note the test sample set is 20 samples with the predictions from
these samples used to compute the correlation values; therefore nParent = 20 and
nChild = 20.

For this example, calculate the r to z′ transformation for both Parent and Child
r-values as: 0.999 and 0.992, respectively. (An r to z′ table (Table 2) or Equation
10 may be used to compute the r to z′ transformation.) For this example, the zParent
= 3.800 and the zChild = 2.759. One may now compute the Zobs = 3.04. (Compare
this value to the Critical Values for the t Distribution as Table 1, Significance level
of 0.025 for a one-tailed test and the critical value is 2.13.)
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Table 1. Critical Values for the t Distribution (20 test samples)

Confidence Level (%) Significance Level (α),
One-Tailed Test

Critical Value of t

90 0.05 1.75

95 0.025 2.13

98 0.01 2.60

99 0.005 2.95

99.9 0.0005 4.07

Table 2. For r to z′ transformation

r (correlation computed) z transform (z′)

0.9999999999 11.859

0.9999999 8.406

0.999999 7.254

0.99999 6.103

0.9999 4.952

0.999 3.800

0.998 3.453

0.997 3.250

0.996 3.106

0.995 2.994

0.994 2.903

0.993 2.826

0.992 2.759

0.991 2.700

0.990 2.647

0.985 2.443

0.980 2.298

0.975 2.185

0.970 2.092

0.965 2.014

0.960 1.946

0.955 1.886

0.950 1.832

Continued on next page.
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Table 2. (Continued). For r to z′ transformation

r (correlation computed) z transform (z′)

0.945 1.783

0.940 1.738

0.935 1.697

0.930 1.658

0.925 1.623

0.920 1.589

0.915 1.557

0.910 1.528

0.905 1.499

0.900 1.472

Conclusion for This Example

Since 3.04>2.13 one rejects the null hypothesis and accepts the alternate
hypothesis, thus rParent is not the same as rChild and r<1 for the Child predicted
values is the conclusion at 95% confidence. The correlation values are not the
same for this test and the predicted values for parent and child have different
correlation values. This indicates the predicted values from the Child are not the
same as the Parent.

Equation for Computing r to z Transformation

The sampling distribution of Pearson’s r is not normally distributed. Fisher
developed a transformation now called “Fisher’s z′ transformation” which
converts the Pearson’s r to the normally distributed variable z′. The r to z′
transformation equation is as Equation 10. This statistic is normally distributed
with a standard error of 1/{n-3}1/2 as published in the references (25).

e. Slope Significance Limit Test between Parent and Child Instruments

If one expects the child instrument to perform identically to the parent
instrument for predictions, one should compute the confidence limits for
comparison between the parent and child predicted values using criteria computed
only from the parent instrument. So for a slope significance test one needs to
look at the slope change between the parent instrument predicted values for a set
of test samples over time and retain these results for this test. To accomplish this
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one would compute the predicted values for a set of 20 test samples on the parent
instrument one-week apart. Thus one would have two sets of predicted values
designated by different measurement times as xi for time 0 (the reference values),
and for the same set of samples measured 1 week later designated as (yi). (Note
these test samples must be chemically stable over the 1 week period. This time
duration depends upon the stability of the instruments and the recommended time
between instrument alignment calibrations.)

For the computation of the acceptable slope Confidence Interval (C.I.) for the
child instrument to be considered alike to the parent instrument, compute three
basic sets of numbers. These are: (1) the set of parent predicted values at time 0
(xi), (2) the set of parent predicted values at Week 1 (yi), and (3) the set of predicted
values from the simple linear regression between these xi and yi values, designated
as (ŷi). Note that n is the number of xi, yi pairs (i.e., 20 for this example). From
these three sets of values one may compute the standard deviation of the residuals
for the predicted values, from the regression (ŷi = b + mxi) as Equation 11.

Then compute the standard deviation for the desired slope as Equation 12.

And now the confidence limit for the slope is given as Equation 13.

Where t is the critical value of the t distribution, two-tailed test, at alpha = 0.05
and with degrees of freedom as n - 2 = 18. This value is 2.10 and can be found in
any table of the Critical Values of the t distribution.

Using this test criteria we may test the child instrument slope following
calibration transfer and compare the slope obtained to the confidence limits of the
test measured on the same parent instrument over the experimental time interval.
To complete this parent and child comparison one would designate the parent
instrument results as xi and the child measured results as yi. Then the slope would
be computed for the regression and must fall within the computed confidence
limits for the time 0 and week 1 parent tests. This is a test of equivalence in slope
between parent and child predicted values.
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Developing Global or Robust Models Including Variation
between Instruments

Various methods have been proposed to produce the universal model, or
a calibration that is mostly robust against standard instrument differences or
changes with time as are common to commercial instruments of today. These
have been referred to as robust models, or global models. For computing a robust
model, various experimental designs have been constructed to better represent the
product, reference values, and instrument calibration space and to include typical
changes and interferents that should be included within the model for it to be
broadly applicable. Using this approach one might design a factorial experiment
for the composition of the calibration set to include multiple variations typically
encountered during routine analysis. A list of some of these variations may consist
of differences in sample pathlength, sample holder type, sample temperature,
sample moisture content, flow rate, particle size, interferent content, instrument
type, constituent ratios, sampling parameters, and others (7). These approaches
will work for a period of time until the instrument conditions drift or the product
or constituent chemistry changes. These types of changes are expected and thus
routine recalibration (i.e., multivariate model updating) would be required as
a standard procedure if the chemistry or instrument measurement changes are
considered significant. A method for selection of specific robust wavelengths
in MLR models that are more forgiving toward wavelength differences in
interference filter based instruments has been demonstrated to be effective (26).
A similar approach might be applied for computing robust PLS or PCR scores
and loadings.

A method to reduce the effect of interference on NIR measurements has
been demonstrated. This is a pre-processing method applying orthogonal signal
correction (OSC). The goal of OSC is to remove variation from the spectral data,
X, that is orthogonal to Y (27). This orthogonal variation is modeled by additional
components for X and results in the decomposition, X = t·p′+topo′+e, where to
and po represent the scores and loadings for the orthogonal component and e
represents the residual. By removing the Y-orthogonal variation from the data via
X − topo′, OSC maximizes correlation and covariance between the X and Y scores
to achieve more accurate NIR prediction (28).

a. Augmenting Models over Time

If instrument differences are significant, the predicted values between parent
and child instruments will be unacceptably large. In these cases, one may begin to
collect more samples on the child instrument and then re-compute the multivariate
model using the majority of high leverage sample data from the child instrument.
This in effect uses the calibration transfer as a temporary solution or bridge to
building an accurate model on the child instrument. Such a practice is often
used when the instrument differences are too significant for direct and accurate
calibration transfer.
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b. Sample Selection To Improve Spectral Data

Sample selection methods have been used and perfected since the beginning
of chemometric methods and spectroscopy. There are many methods and a
variety of nomenclatures for these techniques. The purpose of such methods are
to remove the redundancy in spectral data such that the most repetitive samples
do not have excessive influence or leverage on the multivariate regression model.
This provides a basis such that the regression line is more appropriately fitted to
the extreme samples, including those with high and low analyte concentrations.
Such methods of sample selection include: random subset selection, manual
subset selection, spectral subtraction methods for “uniqueness” tests, stratified
sample selection, discriminant based selection techniques using spectral distances,
correlation matching techniques, PCA methods, and others. These methods are
described in more detail in reference (18). One of the first successful approaches
for sample selection was a process that used spectral subtraction to remove the
unusual spectra from all of the other spectra described in reference (29). Even
early use of these methods significantly improved the Standard Error of Prediction
(SEP) for multiple constituents in forage analysis (30).

c. Spectral Data Transformation

This process consists in altering spectral data from the child instrument to be
more like that measured on the parent instrument. Direct Standardization (DS),
and Piecewise Direct Standardization (PDS) have been used most often for this
procedure (2–5).

d. Local Methods

Locally weighted regression or local regression methods use spectral data
and corresponding reference data to build a “local” calibration using only those
samples near the unknown or test sample spectrum. For example, the unknown
spectrum is measured and the sample spectra most like the unknown are selected
from a resident database. The multivariate calibration model is then computed
using only the local samples. The samples can be down weighted for use in
the regression model based on distance from the unknown sample. This allows
quite accurate prediction analysis when a variety of samples and instrument
type data is incorporated into a spectral database. The first description of the
use of this method for spectroscopy is referenced based on original work from
the statistics community (31, 32). A disadvantage is the requirement for large
resident databases with reference chemistry values, and increased computational
load requirements in order to provide real-time analytical results.

e. Use of Indicator Variables

A method has been used previously that simultaneously optimizes the
calibration for multiple instruments and provides parametric t-tests for the
differences between them. The method creates the calibration by running the
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samples on several instruments (the more the better). All the data is added
into the calibration, and indicator variables are used between the specific
instruments. With this approach one obtains the optimum calibration corrected
for all instruments; the coefficients of the indicator variables are the computed
biases between the instrument results, and the t-tests reported from this method
are valid for the corresponding bias values (33).

There are many conventional and unconventional approaches to calibration
transfer. However the fact remains that significant differences in the instrument
response between parent and child instruments causes the greatest variation in
predicted results following calibration transfer. If instrument spectral profiles can
be made statistically alike between instruments the transfer issue disappears. The
additional challenges of relating specific reference laboratory results to results
predicted using spectroscopy is another ongoing area of discovery and represents
yet another problem set still to be resolved. Noting that absorption spectroscopy
directly measures weight or moles per unit volume and not other arbitrary chemical
or physical characteristics of samples is helpful.

Formal Statistical Methods of Uncertainty

There are prescribed statistical methods for measuring the agreement between
instruments following calibration transfer. These statistical methods used for
evaluating the agreement between two or more instruments (or methods) for
reported analytical results are formalized for commerce or medical devices. The
emphasis is on acceptable analytical accuracy and confidence levels using two
standard approaches: Standard Uncertainty/Relative Standard Uncertainty, and
Bland-Altman “Limits of Agreement”.

How To Tell if Two Instrument Predictions, or Method Results, Are
Statistically Alike?

The main question when comparing parent to child instrument predictions,
or a reference laboratory method to an instrument prediction, or results from
two completely different reference methods, is how to know if the differences
are meaningful or significant and when they are not. There is always some
difference expected, since an imperfect world allows for a certain amount of
“natural” variation. However when are those differences considered statistically
significant differences, or when are the differences too great to be acceptable?
There are a number of reference papers and guides to tell us how to compute
differences, diagnose their significance, and describe the types of errors involved
between methods, instruments, and analytical techniques of many types. Whether
the analytical method is based on spectroscopy and multivariate calibration
methods, other instrumental methods, or even gravimetric methods. One classic
reference of importance is noted for comparing methods (34). This reference
describes details regarding collaborative laboratory tests, ranking of laboratories
for accuracy, outlier determination, ruggedness tests for methods, and diagnosing
the various types of errors in analytical results.
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a. Standard Uncertainty and Relative Standard Uncertainty

The definitions of uncertainty are described by the U.S. National Institute
of Standards and Technology (NIST), a National Metrological Institute (NMI),
which is a non-regulatory agency of the United States Department of Commerce.
NIST’s purpose is to advance measurement science, measurement standards,
and measurement technology. Their charter is to define measurements from first
principles that can be verified world-wide and used as standards for making
measurements of any kind related to commerce or technology. The NIST
definition for Uncertainty is quite specific and is as follows (35, 36).

Uncertainty Defined

NIST Definitions are given for uncertainty concepts.
“The standard uncertainty u(y) of a measurement result y is the estimated

standard deviation of y.”
“The relative standard uncertainty ur(y) of a measurement result y is defined

by ur(y) = u(y)/|y|, where y is not equal to 0.”

Meaning of Uncertainty

If the probability distribution characterized by the measurement result y and
its standard uncertainty u(y) is approximately normal (Gaussian), and u(y) is a
reliable estimate of the standard deviation of y, then the interval y – u(y) to y +
u(y) is expected to encompass approximately 68 % of the distribution of values
that could reasonably be attributed to the value of the quantity Y of which y is an
estimate. This implies that it is believed with an approximate level of confidence
of 68 % that Y is greater than or equal to y - u(y), and is less than or equal to y +
u(y), which is commonly written as Y= y ± u(y).

Use of concise notation If, for example, y = 1 234.567 89U and u(y) = 0.000 11
U, where U is the unit of y, then Y = (1 234.567 89 ± 0.000 11) U. A more concise
form of this expression, and one that is in common use, is Y = 1 234.567 89(11) U,
where it understood that the number in parentheses is the numerical value of the
standard uncertainty referred to the corresponding last digits of the quoted result.

The following use of theNIST nomenclature will demonstrate their definitions
for uncertainty. In Equation 14 it is noted that

where y (is the estimated analytical value for any sample as a function of a
series of measurement quantities such as X1, X2, ..., XN; and where each Xi is an
independent observation (or measurement). When using this nomenclature each
set of measurements for every test sample is denoted as Xi measurements. We
note the value (yi) for each sample measurement is estimated as the sample mean
from N independent measurements and is denoted as Xi ,k, giving the relationship
as follows in Equation 15.
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So the estimated analytical value (yi) is the mean for a number of measurements
of a sample set (X̅i) using the analytical method prescribed. And it follows that the
standard uncertainty u(Xi) with reference to the measured values (Xi) is equal to
the estimated standard deviation of the mean as Equation 16.

So to apply this to a set of comparative data for measurement set X1 and X2, the
following relationship applies as Equation 17.

where u(yi) is the estimated standard uncertainty for a series of measurements
on multiple samples where the mean value of the measurements for each sample
is used for comparison. The Equations 14-17 above are often used for multiple
measurements of a single physical constant. For the calibration transfer application
the date is as X1 (parent) and X2 (child) measurements for each test sample. The
variance is computed for each of the 20 test samples and the pooled results are
tabulated to yield an estimate of standard uncertainty u(yi) as Equation 18.

Relative Standard Uncertainty

This is denoted as ur(yi) = u(yi)/|yi| and so the relative standard uncertainty is
reported as Equation 19.

Confidence Levels are reported as follows for expressions 21 and 22.
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b. Using Bland-Altman “Limits of Agreement”

The Bland-Altman plot is used broadly in medical or clinical analysis. It
represents a standard nomenclature for clinical data in an industry with stringent
requirements for analytical accuracy. There is an entire series of publications
related to this method. Table 3 data illustrates a virtual comparison of four
instruments or four methods used for the same sample set. The results shown are
for analyte concentration for each sample (each row is the same sample).

Table 3. Analytical data used for illustration. (Different instruments or
methods are designated as A, B, C, and D)

Sample No. A B C D

1 12.4 12.1 14.9 16.1

2 12.9 12.5 15.5 16.8

3 14.0 13.9 16.8 18.2

4 16.0 15.9 19.2 20.8

5 13.2 12.9 15.8 17.2

6 12.8 12.7 15.4 16.6

7 14.5 14.9 17.4 18.9

8 13.0 13.4 15.6 16.9

9 13.6 13.5 16.3 17.7

10 12.7 12.6 15.2 16.5

11 14.2 14.6 17.0 18.5

12 16.3 16.4 19.6 21.2

13 17.8 17.9 21.4 23.1

14 18.0 18.5 21.6 23.4

15 14.5 13.9 17.4 18.9

16 17.2 17.5 20.6 22.4

17 14.4 14.6 17.3 18.7

18 15.2 15.7 18.2 19.8

19 16.6 16.5 19.9 21.6

20 13.5 13.1 16.2 17.6

The Bland-Altman paper describes the errors often made when comparing
analytical methods (10). The authors summarize the contents of this paper as
follows, “In clinical measurement comparison of a new measurement technique
with an established one is often needed to see whether they agree sufficiently for
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the new to replace the old. Such investigations are often analyzed inappropriately,
notably by using correlation coefficients. The use of correlation is misleading.
An alternative approach, based on graphical techniques and simple calculations,
is described....” So what can be learned by using the techniques described in this
paper to compare results from analytical methods? When methods are compared
following calibration, one attempts to assess the degree of agreement between
them. Bland and Altman discount completely the use of correlation as a useful
parameter to assess analytical agreement. Their arguments are given in this
discussion.

For this illustration, an initial comparison of different instruments or analytical
methods are made as measurements A through D for each sample (Table 3). A
line of equality plot is then made to compare the results. The various X,Y data
points are plotted against a perfectly straight line of equality. The authors make
the point that correlation (r) measures the strength of the relationship between two
variables, but it does not measure the agreement between them (Figure 1). Perfect
agreement is indicated by the data points lying directly on the line of equality. A
perfect correlation is indicated if the points lie along any straight line. The authors
emphasize that: (1) correlation indicates the strength of a relationship between
variables - not that the analytical results agree; (2) a change in scale does not
affect correlation, but drastically affects agreement; (3) correlation depends upon
the range of the true quantity (analyte) in the sample; (4) tests of significance are
mostly irrelevant between two similar analytical methods, and (5) data in poor
agreement analytically can be highly correlated (Figure 2). Figure 2 shows three
analytical sets with perfect correlation but poor agreement.

Figure 1. Instrument or Method A (x-axis) as compared to Instrument or Method
B (y-axis), with data points compared to a perfect line of equality.
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Figure 2. Instrument or Method A (x-axis) as compared to Instruments (or
Methods) C and D (middle and top scatter plots), showing line of equality
for perfect agreement with A (solid line). Note that C and D have a perfect
correlation to A (r = 1.00), but are not in analytical agreement. This indicates
correlation as an imperfect representation of agreement between methods.

A Bland-Altman plot (Figure 3), extremely familiar to clinical analysts,
demonstrates a good visual comparison technique to evaluate the agreement
between two methods or instruments, using the data comparison found in Table 3.
The data indicates a comparison of different instruments or different methods for
identical samples (as rows). The x-axis (abscissa) for each sample is represented
by the average value for each sample obtained from the comparison results
(using two methods or two instruments). The y-axis (ordinate) for each sample
is represented by the difference between one method and the second method (or
measurements from instruments A and B used for this example) for each test
sample. Such a plot uses the mean and plus or minus two standard deviations as
the upper and lower comparison thresholds.

To assess if the data are in close enough agreement for analytical purposes
between A1 and B1 the bias or mean difference (d̅) , the standard deviation of the
differences (s or SD), and the expected “limits of agreement” are all computed.
These are expressed as d ̂±2·s for a 95% confidence level.
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Figure 3. The Bland-Altman Plot indicating the difference plotted against the
mean for each sample for Instrument (or Methods) for A and B. The average for
A + B for each sample is plotted as abscissa(x-axis), versus difference of A-B
plotted on y-axis. Perfect agreement demonstrates a horizontal line along the

0.0 y-axis.

The mean difference is computed as the average of all the differences between
the comparative instruments, for each sample as Equation 22.

The standard deviation for this comparison for a set of sample measurements A
and B is computed as Equation 23.
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If the Bias, Standard deviation for all samples, and a comparison with the 95%
confidence limits (d ̅±2s) indicates the measured differences are considered too
large for a 95% confidence of the result agreement between methods, the methods
are not considered equivalent. On the other hand if these limits of agreement
are acceptable for the application where they are used the results are equivalent.
In a clinical situation a physician determines the level of accuracy or agreement
required for critical intervention decision making; this would be analogous to a
process control supervisor or analytical scientist assessing the acceptable level
of agreement between comparative methods in order to use the alternate method
or child instrument following calibration transfer as an acceptable and approved
analytical substitute.

Conclusions

There are multiple methods that have developed for use in transferring
calibrations and for testing the efficacy of calibration transfer. Continued
advancements in the design and manufacturing of instrumentation, as well as the
application of chemometric and statistical methods is providing an increasingly
scientific and metrical basis for the methods and validation of multivariate
calibration transfer. Classic and advanced methods have been applied to analytical
results in commerce and clinical analysis. Included below are references for the
reader’s further study of this subject of comparing two or more analytical methods
or instruments following the transfer of calibrations. Other references discussing
the mathematical details of comparing analytical methods are given in references
(37–42).
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Chapter 12

Approaching the Chemometric Modeling of
Realistically Diverse Biochemical Data

Jeffrey A. Cramer*

Naval Research Laboratory, 4555 Overlook Avenue SW,
Washington, DC 20375, United States
*E-mail: jeffrey.cramer@nrl.navy.mil

Every biomolecule can potentially interact with every other
biomolecule with which it comes into contact. This large
and diverse array of potential biomolecules and potential
interactions becomes problematic when attempting to produce
predictive biochemical models intended to reliably derive
actionable information under the maximum possible number
of realistic circumstances. The following chapter presents
an overview of how biochemical modeling challenges have
historically been addressed in –omics fields using the tools
found in chemometrics and related statistical analysis and data
modeling fields, as well as how the challenge of realistic and
robust biochemical analysis and modeling might be addressed
in the future.

Introduction

Realistic attempts to comprehensively model or otherwise characterize
biochemical data must contend with the high levels of chemical complexity
found in metabolically-active biochemical systems (1) to achieve high levels
of reliability. Grappling with this complexity is especially important within the
various fields of biologically-oriented “-omics” research (such as metabolomics,
proteomics, and genomics) that routinely utilize high-throughput techniques, such
as hyphenatedmass spectrometry (MS) (2) paired with database searches and other
specialized software applications (3), to produce large amounts of biochemically
meaningful data (4), usually with some biochemically meaningful endpoint as
an analytical target (5). Because biological processes are typically the results of
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interactions between many biomolecules (6, 7), and because these biomolecules
have a diverse array of chemical and physical properties (8), up to and including
their three-dimensional structures (9) and how these three-dimensional structures
interact with one another (10) and the potential therapeutics to be introduced as
a consequence of analysis (11), comprehensive biochemical modeling quickly
becomes a non-trivial task. This non-triviality is further compounded by the
realistic scope of comprehensive biomolecule classification (12), the dynamic
biomolecular changes brought on by factors as random as mutations (13), the fact
that any given biomolecule might not fundamentally interact with the employed
analytical method in an anticipated fashion (14, 15), and all potential interferents
to be found in the extended environments within which targeted biomolecules
may exist (16), up to and including the presence of distinct microbiomes within
larger individuals (17).

Perhaps understandably, then, the primary method by which to address the
challenges presented by complex biochemical interactions is to not address them
at all, instead finding biochemical actors and relationships that might be limited in
scope, but are believed (correctly or not (18)) to be robust enough to be found in a
majority of circumstances, regardless of the competing interactions of individual
biomolecules and their environment. While this limited approach can sometimes
be a very successful one, more in-depth and far-reaching analyses can potentially
encompass a greater degree of realistic biodiversity, thus providing more reliable
and more useful information more often to the end-user.

This chapter delivers an overview of how the modeling and analysis tools
found in the field of chemometrics, as well as related statistical analysis and data
modeling fields, have historically been deployed to address complex biochemical
challenges in –omics fields. Three overarching trends are apparent in this history,
two chemically-specific trends and one functionality-specific trend. The two
chemically-specific modeling trends make for a bifurcated “forest and trees”
approach to chemically-specific biochemical modeling: in the “trees” branch
of the approach, discrete biomarkers are identified and characterized, whereas,
in the “forest” branch of the approach, the interactions of multiple biochemical
factors are identified and characterized. In contrast, the functionality-specific
trend foregoes chemical specificity to, as directly as possible, answer the question
that the end-user would actually like answered by the data. An extrapolation will
also be made regarding how these three trends might be combined to address
biochemical challenges in a robust and comprehensive fashion in the future.

Timeline Note

Although this book is intended to cover four decades’ worth of the history of
chemometrics, the –omics fields as a whole have not existed for forty years (the
term “proteomics” only dates to 1995, for instance (19)), and the interface between
chemometrics and –omics is a similarly recent conceptual space. This is the reason
that the vast majority of references in this chapter have appeared in the literature
within the past ten to fifteen years.
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Biomarkers: Modeling the Trees

When modeling discrete biological phenomena, it is sometimes possible to
find similarly discrete, biochemically meaningful indicators (i.e. biomarkers) that
directly infer the actionable information desired (20). If a biomarker, such as a
protein or a peptide or even an abnormal quantity of a single atom or ion, is only
produced in response to the specific biological phenomenon being interrogated,
then the biomarker is completely selective to that phenomenon, and even
biomarkers that are not completely selective can still be useful analytically. The
use of biomarkers is also aided by the fact that living systems, generally speaking,
at least attempt to maintain homeostasis in the presence of external stressors (21),
potentially allowing biomarker-based diagnostics to remain relevant despite said
stressors.

Finding these biomarkers in the raw data in the first place, of course, can be a
challenge in and of itself. Although direct comparisons between data sets collected
from samples with and without biomarkers are sometimes possible (22) (and can
sometimes be further aided by feature detection algorithms (23) and biochemically
relevant statistical techniques (24)), chemometrics tools and related data analysis
tools have also been effectively deployed in the recent past to extract biomarker
information from large, complex biochemical data sets.

Hyphenated MS Data Preprocessing

One of the most potent tools in identifiying chemically-specific biomarkers
is the chemically-specific analysis techniques of hyphenated MS, and one of
the most notable phenomena to discuss in the context of hyphenated MS data is
that of misaligned peak data. Misaligned peaks cause nonlinear data variations
that render linear modeling procedures and feature-based database searches
problematic. Many hyphenated MS peak alignment approaches have already
been collated in previous -omics reviews (25, 26), and a few biomarker-specific
examples of peak alignment strategies have even appeared in the literature. Some
examples:

• 2004: An alignment strategy specifically geared towards biomarker
discovery in liquid chromatography MS (LC-MS) data, based on the
maximization of spectral similarities, was developed (27).

• 2005: A software tool called PepMatch was developed to align peptide
features, extracted from LC-MS data, across multiple samples (28).

• 2006: The peptide- and protein-specific alignment technique of ordered
bijective interpolated warping (OBI-Warp) was developed and applied
to electrospray ionization liquid chromatography MS (ESI-LC-MS) data
(29).

• 2006: Nonlinear robust ridge regression was applied in the alignment
of the LC-MS data collected from biochemically complex plant cell
culture samples (these samples differed in the manner in which they
were illuminated prior to sampling, resulting in detectable biomarker
changes) (30).
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• 2010: Metabolite-oriented peak alignment was extended to two-
dimensional gas chromatography - time-of-flight-MS (GC x GC-
TOF-MS) using landmark peak identifications (acquired from discrete
biomarkers) and the local partial linear fitting of these peaks to
compensate for unwanted time shifts (31).

It should be noted here that, even after data alignment is satisfactorialy
accomplished, the aligned data may still require preprocessing to smooth out
unwanted data features to facilitate biomarker discovery. This smoothing can be
accomplished through the use of a hierarchical, non-global multivariate curve
resolution (MCR) strategy, as was seen in 2005, in work that also included
validation in the form of unsupervised and supervised biomarker-based pattern
recognitions (32).

Database Searches

During the course of identifying discrete biomarkers, it is routinely necessary
to compare data collected in-house to archived databases in order to objectively
establish biomarker identities. Feature detection and selection are critical in the
context of effective database searches, and biomarker-specific algorithmic search
tools have been developed to facilitate these operations. Some examples:

• 2006: A quality control metric called mass deviance, itself based on
comparisons between the masses of identified features and theoretical
peptide masses as they would have appeared in the original LC-MS data
set, was developed (33).

• 2010: A type of proteomics-oriented tandemMS spectral deconvolution,
in which the collections of peaks arising from related fragment ions
possessing the same chemical formulae and charge states, but arising
from different isotopic distributions, was produced to improve database
comparisons (34).

• 2013: The t test, Mann-Whitney-Wilcoxon (mww) test, nearest shrunken
centroid (NSC), linear support vector machine-recursive features
elimination (SVM-RFE), principal component discriminant analysis
(PCDA), and partial least squares discriminant analysis (PLSDA) were
all compared as potential methods by which to select biomarker-relevant
features in LC-MS data sets (35).

Once a database search is performed and biomarker identities have been
assigned, however, a validation procedure may still be necessary to ensure that the
assigned identity is, in fact, accurate. Such a validation procedure was produced
in 2008 by constructing a Bayesian classfier, using an expectation-maximization
(EM) algorithm, that incorporates decoy (i.e. false) peptide matches to allow for
validation in those circumstances in which more common validation software
would not perform as expected (36).

It should also be noted that, even after biomarkers have been identified and
confirmed to exist in a given data set qualitatively, the actual data used to produce
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these identities might not provide accurate quantitative information, as could be
the case with hyphenated MS techniques. To compensate for this phenomenon, in
2008, parallel factor analysis (PARAFAC) was applied to GC x GC-TOF-MS data
to more accurately quantify peak volumes and, hence, more accurately quantify
the metabolic activities of 44 distinct biomarkers (37).

Pattern Recognition

In those cases of exploratory data analysis in which biomarker identities
are not necessarily known a priori, chemometrics-based pattern recognition and
machine learning tools can and have been deployed. Some examples:

• 2006: Fisher ratios were used to find variances between sets of GC x
GC-TOF-MS data, a technique used in the referenced work to generate a
list of biomarkers from a set of urine metabolite samples (38).

• 2008: PLS and PCA were applied to GC-MS data to obtain regression
coeffecients that were subsequently used to select discrete biomarkers
corresponding to acute liver failure in rats (39)

• 2008: PCA and classification modeling were applied to trace element
data collected from plant samples to determine which specific elements
could be used to indirectly characterize aspects of plant physiology (40).

• 2009: Electrospray ionization MS (ESI-MS) data collected from two
sets of mouse liver extracts, each with different cholesterol levels, were
subjected to PCA, not only to determine how the data clustered in
the subsequent PC space, but also to obtain loadings indicating which
biomarkers contributed to the observed clustering (41).

• 2010: Decision tree-based classifiers were applied to an established
metabolomics database to mine hyphenated MS data features for the
presence of unidentified biomarkers (42).

Data Degeneracy

Obviously, the search for discrete biomarkers has certain limitations. In
the context of proteomics, for instance, different proteins can share extensive
portions of their respective peptide sequences, a phenomenon known as peptide
degeneracy. This degeneracy sometimes renders attempts to infer the presence of
a given protein using peptide-based analytical data problematic, especially when
accommodating realistically complex biological samples (43). Though it should
be noted that proteins sharing a great deal of their peptide sequences might be
similar enough for the purposes of deriving actionable information from said
peptides (44), this will not always be the case, and realistically comprehensive
data analysis and modeling strategies must take these degeneracies into account,
as was done in the following examples:

• 2008: A hierarchical statistical modeling methodology was developed to
simultaneously account for the uncertainties in both tandem MS-based
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peptide identifications and protein identifications based on these same
peptide identifications (45).

• 2010: A normalized spectral abundance factor (itself a quantification
based on the counted number of hyphenated MS spectra associated with
a given protein identification) was modified in such a manner that shared
spectral counts corresponding to shared peptide identifications were
distributed based on unique spectral counts corresponding to unique
peptide identifications (46).

• 2010: A Bayesian method was employed to reduce the relevance of
degenerate peptide information during the course of MS-based protein
biomarker identification (47).

Interactions: Modeling the Forest

As indicated previously, real-world biochemistry does not occur in a
metaphorical vacuum. The discovery and modeling of discrete biomarkers, and
knowing where said biomarkers are generally located at a macroscopic level (thus
allowing proper sampling strategies to be developed), will not necessarily take
all possible (or even all realistic) biochemical interactions and interferences into
account. This potential limitation to robust biochemical analysis and modeling
has, of course, not escaped the notice of -omics practitioners (48, 49).

Pattern Recognition

Several methods have been developed using chemometrcs and related analysis
and modeling techniques to more thoroughly evaluate these complex interactions
in a biologically realistic fashion. Some examples:

• 2005: Both consensus PCA (CPCA) and multi-block PLS (MBPLS)
were used to analyze GC-MS and LC-MS data simultaneously in a fused
fashion. This was done specifically to correlate this data directly to a
fermentation reaction in a manner unavailable when making use of either
data set separately, due to the different metabolites detected using each
technique and the complex metabolic pathways being utilized by all of
the detected metabolites during the course of the fermentation (50).

• 2006: PCA was applied to three sets of data (collected using nuclear
magnetic resonance, or NMR, spectroscopy; ultra-performance LC-MS,
or UPLC-MS; and GC-MS) obtained from plasma collected from two
different rat populations, and the resulting score clusters varied in a
manner that could be used to discriminate between these two sample
populations based on multiple interrelated metabolic differences (51).

• 2006: A hybrid approach (combining genetic algorithms, or GA, and
artificial neural networks, or ANN) was developed to find groupings of
interrelated biomarkers within the data collected from gene expression
microarrays. In the approach, GA was used to select subsets of the
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expressed genes, and an ANN was employed to inform the production
of the GA fitness function (52).

• 2008: Six different dimensionality reduction strategies (PCA;
linear discriminant analysis, or LDA; classical multidimensional
scaling; isometric mapping; locally linear embedding, or LLE; and
Laplacian eigenmaps) were applied to gene and protein expression
data. These strategies were evaluated in terms of how well the
subsequently-generated, dimension-reduced data sets maintained their
abilities to represent known classes, and find novel subclasses, within
the parent biochemical data (53).

• 2008: PLS, uninformative variable elimination PLS (UVE-PLS),
continuum power regression (CPR), a hybrid technique combining
UVE-PLS and CPR, classification and regression trees (CART),
stepwise multiple linear regression (MLR), and genetic algorithm MLR
(GA-MLR)were all employed to reducemicroarray data dimensionalities
(and, hence, increase data interpretability) through feature selection in
an attempt to uncover interrelated gene expressions (54).

• 2012: A novel sparse MBPLS (sMBPLS) modeling procedure was
applied to a multi-dimensional data set consisting of DNA methylation
(DM) data, copy number variation data, microRNA expression (ME)
data, and gene expression (GE) data to more comprehensively elucidate
the complex and interacting mechanisms behind gene regulation (55).

• 2012: A joint non-negative matrix factorization was simultaneously
applied to sets of DM, ME, and GE data to elucidate complex cellular
activities in order to classify sample sub-groups (56).

• 2012: Goeman’s global test (a technique used in genomics for finding
differences in how groups of genes express themselves in RNA
microarray data) was applied to metabolomics-based hyphenated MS
data. The use of this technique is intended to establish differences
between metabolic conditions at the metabolic pathway level (57).

• 2012: A technique dubbed individual differences scaling (INDSCAL,
itself related to PARAFAC) was used to directly focus upon and correlate
the differences found between multiple metabolites as reported in
metabolite profiles (58).

• 2012: Simultaneous component analysis (SCA) was combined with
INDSCAL-like constraints to more comprehensively interrogate
the overall metabolic differences between the specific compound
measurements of individual plant samples (59).

• 2013: The technique of weighted correction network analysis (WGCNA)
was used to derive eigenvalues from the hyphenated MS data collected
from maize kernels, resulting in the non-targeted collection of
biomarkers. These eigenvalues and their associated biomarkers, in turn,
elucidated metabolic pathways (60).

• 2013: Both the primary and secondary metabolism of plant samples
was modeled using a combination of GC-MS and LC-MS with the
explicit goal of understanding plant-environment interactions. This
work combined the GC-MS and LC-MS data sets in the context of a
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single modeling challenge and employed Granger causality metrics
(derived from the field of econometrics) to find metabolically relevant
relationships in the data (61).

• 2013: MBPLS and multi-block PCA (MBPCA) were used to combine
two separate GC-MS data sets to facilitate the discovery of not only the
discrete biomarkers associated with meat spoilage, but also (by means
of a Bayesian network analysis) how these biomarkers are interrelated to
one another (62).

Larger-Scale Interactions

The biochemical interactions that were interrogated in the previous examples
were primarily focused on the level of individual biomolecular interactions.
However, there are other, larger-scale interactions that might be explored using
chemometric tools. For example:

Multi-Protein Complexes

The three-dimensional structures of individual and disparate proteins, due to
both chemical and geometric affinities, often spatially associate with one another
in very specific protein complexes (63). These three-dimensional associations are,
unfortunately, difficult to perceive using analytical techniques, such as hyphenated
MS, unless modifications are made to the complexes themselves to render
them more obvious. Protein complexes, therefore, are typically interrogated
experimentally using various forms of chemical cross-linking, a technique that
produces additional chemical bonds between proteins in a given complex. Upon
digestion, these additional chemical bonds hold portions of the original proteins
together in a manner commensurate with their original configurations within the
complex, information that can then be subsequently extracted using hyphenated
MS (64), matrix-assisted laser desorption ionization MS (MALDI-MS) (65), or
combinations of these and other experimental techniques and statistical methods
(66) combined with commensurate software applications (67).

It should be noted here that alternatives that measure more generalized
protein-protein affinities than those described above are available if less
precise three-dimensional information is necessary (as might be the case if
extensive databases of pre-existing information are to be employed) (68). Also,
mathematical models (up to and including Quantitative Structure-Activity
Relationships, or QSARs (69)) can be used to extrapolate at least some aspects of
how individual proteins are likely to interact with one another in three-dimensional
spaces (70, 71).

Imaging

Knowing where individual biomarkers, and the interactions that can be found
between them, are locatedmacroscopically in living and/or environmental samples
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might also be used to obtain a more complete picture of overarching biological
phenomena. Biologically meaningful results have already been extracted from
imaging data using chemometric modeling and related data analysis strategies as
applied to morphological phenomena such as size and shape (72–75).

Metaproteomics

The full characterization of the biomolecular complement of mixed
communities of organisms (76) has its utility in the commensurately full
characterization of the inter-organism interactions associated with these
communities and the large-scale effects that result from these interactions (77).
For example, marine biofilms are collections of many disparate organisms, and
metaproteomic work was performed in 2012 to determine how best to obtain
insights into the overall compositions of sampled biofilms from LC-MS/MS data
sets (78).

Functionality: Answering the End-User’s Question

Characterizing individual biomolecules and how they interact in overall
biochemical systems is a necessary step in comprehensively understanding what
is happening in a given biochemical system. Obviously, however, there are many
instances in which a comprehensive understanding of a sample’s biochemistry
is not necessary to address basic macromolecular, macroscopic questions, such
as in the case of bioprocess quality control (79). In these circumstances, data as
compositionally informative as hyphenated MS data might not even be necessary,
and other types of robust, lower-cost instrumentation (typically still possessing
the second-order advantage (80) to compensate for uncalibrated biochemical
and environmental interferents as well as some irregularities in instrumentation)
can be employed (81) provided that one has taken into account the challenges
associated with employing chemically non-specific techniques when analyzing
chemically and morphologically diverse samples (82). Of course, the use of data
that are less chemically specific than hyphenated MS data renders chemometrics
and other statistical methods no less useful and, in some cases, necessary to derive
actionable information.

It should be noted that the following examples of this avenue of research tend
slightly towards the applications of variable selection techniques, which makes
sense in the present context because such techniques can potentially be quite useful
with respect to the modeling of discrete biological phenomena in the presence of
realistic biochemical interferences:

• 2001: Two-dimensional scanning fluorimetry data collected from a
biofilm were correlated to the biological degradation of chlorinated
organic compounds by said biofilm using ANNs (83).

• 2003: The musts of white grapes were classified according to their
corresponding grape variety by fusing data from aroma sensors,
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Fourier transform infrared (FT-IR) spectrometry, and ultraviolet (UV)
spectrometry using a Bayesian approach (84).

• 2005: Microbial growth, in terms of both biomass and the presence
of specific biogenic components, was modeled using PLS, radial basis
function (RBF) networks, and variable selection via self-organizing maps
(SOMs), as applied to both dielectric spectroscopy and two-dimensional
fluorescence spectroscopy (85).

• 2006: Consensus PLS (cPLS), in which multiple predictions obtained
from multiple individual models are combined into a single prediction,
was applied to near-infrared (NIR) data collected from corn samples to
predict moisture, oil, protein, and starch contents (86).

• 2006: The behaviors of multiple fluorescent compounds, and how
these behaviors correlate to the overall growth of yeast and the glycerol
contents of individual samples, were modeled using a combination of
PARAFAC and PLS as applied to multiwavelength, two-dimensional
fluorescence measurements (87).

• 2007: Several versions of PLS, each making use of a different variable
selection strategy, were applied to NIR data collected from apples to
predict soluble solid contents (88).

• 2009: Dynamic time warping was used to align the peaks of a GC x GC
data set (with the utilized MS detector’s signal summed as a single total
ion current) in order to more effectively allow both PCA and independent
component analysis (ICA) to differentiate between the three types of
tobacco used to produce the data (89).

• 2010: Nicotine content was correlated quantitatively to the NIR data
collected from tobacco samples by applying boosting PLS (90).

• 2010: An antibiotic production process was monitored with
multiwavelength fluorescence spectroscopy (the PARAFAC loadings of
which were correlated to known fluorophores) and gas analyzer data;
PLS, multilinear PLS, and locally weighted regression (LWR), in concert
with multiple variable selection strategies, were used to correlate the
data to biomass and amino acid concentration (91).

The Future of Functionality

Based on the three general trends presented in this chapter, the manner
in which to achieve robust and realistic biochemically-oriented chemometrics
modeling might seem obvious: combine the use of hyphenated MS data
(which allows for the chemically-specific discovery of discrete biomarkers
and the extrapolation of chemically-specific biomarker interactions) with
practical, actionable functionality modeling. This would, essentially, allow
for functionality-level modeling that would have direct, thorough, and robust
biochemical information “baked in” to the raw data, thus allowing modeling
and analysis operations to address the goals of end-users as directly, thoroughly,
and robustly as possible. Imaging versions of MS already exist (92) to collect
chemically-specific large-scale morphological data, if as much were required to
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address biological heterogeneities (though the use of chromatographic separations
would need to be re-evaluated in this context). One could even envision
hyphenated MS data sets sufficiently comprehensive enough to address the
challenges of metaproteomics and data analysis strategies sufficiently (artificially)
intelligent enough to predict and accommodate the existence of multi-protein
complexes.

Generally speaking, however, models are only as good as the data upon
which they are based. Unless one intends to include every biomolecule that has
ever and could theoretically ever exist on this planet with inordinate amounts
of real and theoretical training data, determinations will likely have to be made
regarding exactly how robust and realistic modeling solutions arising from
this course of action can actually be. Even if the ideal of infinitely robust and
realistic modeling were to be abandoned, though, attempting to model data sets
representing large numbers of potential biomolecules and relatively few numbers
of sampled individuals is already a recipe for overfitting (93), and this becomes
all the more problematic if the challenge becomes one of accomodating the
maximum possible amount of chemically-specific biodiversity for realistically
comprehensive functionality-specific hyphenated MS data modeling.

The direct modeling of functionality using biomolecular data in a manner
even approaching realistic comprehensiveness, therefore, must be accompanied
by a methodology to accommodate unknown and unknowable biomolecules and
biomolecular interactions. The beginnings of such a methodology might be found
in the general idea of situational awareness (94), which combines the high-level
or information-level data fusion of multiple types of data with probabilistic
machine learning algorithms (such as Bayesian belief networks (95)) to identify
meaningful events under a maximally diverse array of conditions. Combined
with adaptive learning methodologies such as particle swarm optimization (96), it
would likely be possible to construct robust and realistic (though not necessarily
perfectly robust and realistic) biochemical functionality models that can adjust
themselves dynamically to new, untrained conditions.

Other Considerations
Secondary Metabolites

Metabolically active biomolecules that are not strictly necessary for
maintaining essential metabolic functions can be modeled both in and of
themselves and as a means of indirectly inferring more critical pieces of actionable
information. For example, using secondary metabolites, the presence and identity
of individual microbes can be established (97) and biochemically meaningful
comparisons can be made between them (98). The use of secondary metabolites
becomes especially interesting as a methodology by which to characterize entire
microbial colonies because such multi-microbe collectives would be expected to
produce collections of secondary metabolites indicative of overall biochemical
conditions throughout the colony. The relevant data from these multi-microbe
colonies could also be collected in a minimally-invasive, minimally-destructive
fashion, as was accomplished in 2012 using nanospray desorption ESI-MS (99).
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Experimental Design

It should finally be noted here that the analysis of large data sets for the
purposes of biomarker discovery, and perhaps even functionality modeling,
could potentially benefit from the application of deliberate experimental design
principles to minimize duplicated effort (100). This is especially true in those
cases in which a data feature corresponding to a biomarker might not be as
biochemically important in the context of a single experiment as in the context of
multiple experiments (101). Such a circumstance would present the challenge of
minimizing the number of samples necessary to ensure that such a biochemical
importance would remain apparent.

Conclusions
The preceding chapter has presented an overview of ongoing research

progress along the interface of chemometrics and the various –omics fields.
This progress was reported upon in the context of three overall trends and how
these trends might be coordinated into a single overarching methodology to
address realistically diverse and complex biochemical challenges. This potential
coordination notwithstanding, efforts to model and otherwise characterize
biomarkers, biochemical interactions, and biochemical functionality will most
likely experience future increases in accuracy, precision, and scope for as long
as the analysis of –omics biochemical data is deemed a productive avenue of
research.
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Chapter 13

Fusing Spectral Data To Improve Protein
Secondary Structure Analysis: Data Fusion

Olayinka O. Oshokoya and Renee D. JiJi*

Department of Chemistry, University of Missouri-Columbia, 601 S. College
Avenue, Columbia, Missouri 65211, United States

*E-mail: jijir@missouri.edu

The determination of protein secondary structure has become
an area of great significance as this knowledge is important
for understanding relationships between protein structure
and, more importantly, how the changes in structure affect
function. Previous studies suggest that a complementary use
of spectroscopic data from optical methods such as circular
dichroism (CD), infrared (IR) and ultraviolet resonance Raman
(UVRR) coupled with multivariate calibration techniques
like multivariate curve resolution-alternating least squares
(MCR-ALS) is the preferred route for real-time and accurate
evaluation of protein secondary structure. This study
presents a new strategy for the improvement of secondary
structure determination of proteins by fusing CD and UVRR
spectroscopic data. Also, a new method for determining the
structural composition of each protein is employed, which is
based on the relative abundance of the (φ,ψ) dihedral angles
of the peptide backbone as they correspond to each type of
secondary structure. Comparison of the predicted protein
secondary structures from MCR-ALS analysis of CD, UVRR
and fused data with definitions obtained from dihedral angles of
the peptide backbone, yields lower overall root mean squared
errors of calibration for helical, β-sheet, poly-proline II type
and total unfolded secondary structures with fused data.

© 2015 American Chemical Society
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Introduction

Protein secondary structure quantification has become an area of intense
biochemical and biophysical research due to the effects of secondary structure on
tertiary and quaternary protein structure. There are four levels of protein structure
and a change at any level can result in changes in protein function. The primary
structure of a protein is the amino acid sequence while the secondary structure
refers to the structural motifs within the protein that are defined by the phi (φ) and
psi (ψ) dihedral angles of the amide backbone (Figure 1).

Figure 1. Peptide backbone showing phi (φ) and psi (ψ) dihedral angles.

The three dimensional arrangement of these secondary structure motifs is
the tertiary structure and finally the arrangement of protein tertiary subunits to
each other in larger complexes that function as a single unit is the quaternary
structure (1–6). Since secondary structure plays a significant role in protein
function and select diseases, it is therefore of substantial interest to rapidly and
accurately quantify protein secondary structure especially in an environment
that mimics physiological conditions. Traditional methods of protein secondary
structure quantification such as x-ray crystallography (XRC) (7), nuclear magnetic
resonance (NMR) (8) and circular dichroism (CD) (9–11) are now complimented
by a host of vibrational methods, in particular, ultraviolet resonance Raman
(UVRR) spectroscopy which has proven useful due to its structural sensitivity to
the amide backbone. CD is the current standard in secondary structure analysis of
proteins and UVRR is an up-and-coming technique (12).

Previous studies show that multivariate analysis of CD and UVRR data
results in relatively accurate prediction of helical (α- (-57°, -47°), + 310- (-49°,
-26°)) and β-sheet (anti parallel (-139°, 135°), + parallel (-119°, 113°)) secondary
structures in proteins, respectively, but relatively poor prediction of the other
secondary structures (13). This is because α-helical secondary structure has the
largest relative signal intensity in CD spectra of proteins whilst β-sheet secondary
structure has the highest relative signal intensity in UVRR spectra of proteins.
Combining the predicted amounts of helical and β-sheet contents from CD and
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UVRR enables a more accurate estimation of the disordered content, thus, more
accurate predictions of secondary structure content (13).

In this study, we describe a new addition to the toolbox for protein secondary
structure determination by taking advantage of the partial selectivity’s of both
CD and UVRR spectroscopies. The best estimates by MCR-ALS analysis
are achieved with fused data from both spectroscopic techniques. Data fusion
refers to methods that combine multiple data types into a single data array,
with the expectation that the resulting fused data will be more informative
than the individual input sources (14–17). Generally, performing data fusion
offers advantages which include improved detection, confidence and reliability
(18–24). Data fusion can be executed in one of three fashions; data level fusion,
where the raw data generated by multiple sources are combined directly, or after
appropriate normalization has been carried out so that the data are commensurate;
feature-level fusion, where feature extraction methods are used to generate
representations of the raw data which are then combined; and decision level fusion
which involves combining decisions that have been arrived at independently by
the available sources (17). In this study, we utilize data level fusion, fusing the
raw or preprocessed UVRR and CD data before any other analysis is carried out.

We have compared different preprocessing methods for the fused data to
determine which method improves protein secondary structure prediction. We
have also defined the structural classifications of secondary structure based on
the relative distribution of (φ,ψ) dihedral angles of the amide backbone in each
protein. We show that by redefining secondary structure based on dihedral angles
and application of data fusion to CD and UVRR spectroscopic data, we can
improve the determination of not only the helical or β-sheet contents of proteins
but also other secondary structures most notably the poly-proline II (PPII) type
structure.

PPII-type structure was first identified by Tiffany and Krimm (25–27) in poly-
L-lysine and poly-L-glutamic acid and has since been shown to be the predominant
structure in unfolded or disordered protein regions. PPII-type structure has (-79°,
150°) dihedral angles and is stabilized by water hydrogen bonding with the peptide
backbone. Unfortunately, this structure is not defined in the protein data bank
and thus difficult to quantify and distinguish from other unfolded or less prevalent
structures. Less prevalent structures include left handed α-helices (57°, 47°) and
turns, which typically make up less than 5% of the protein’s secondary structure.
Turns are more complicated as the (φ, ψ) dihedral angles are not repetitive and
differ depending on the type of turn. Thus, for quantitative purposes, it makes
more sense to define each protein’s structural composition based on the abundance
of (φ, ψ) dihedral angles.

Materials and Methods
Sample Preparation

Nine globular proteins with varying secondary structure content (Figure 2),
amino acids L-phenylalanine and L-tyrosine were obtained from Sigma Aldrich
(St Louis, MO) and used without further purification. The proteins and amino
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acids were dissolved in 10 mM phosphate buffer solution (pH 7.2). Protein and
aromatic amino acid concentrations were determined by UV-Visible absorption
using a Hewlett Packard 8453 spectrometer (Palo Alto, CA), and were 0.5 mg ml-1
for protein solutions and 200 µM for amino acid solutions for UVRR analysis and
0.2 mg ml-1for CD measurements. Protein coordinate files for the nine proteins
were downloaded from the protein data bank, PDB (www.rscb.org) (28) and a
dihedral angle calculator readily available online (http://cib.cf.ocha.ac.jp/bitool/
DIHED2/) (29) was used to determine the relative abundance of the (φ, ψ) dihedral
angles in each protein for secondary structure content distribution as displayed in
Figure 2. The selected proteins are readily soluble in aqueous solution, have a
well-distributed combination of the major secondary structures and are relatively
inexpensive, making them an ideal set of calibration proteins.

Figure 2. Secondary structure content (%) of proteins used calculated from
(φ, ψ) dihedral angles as found on the Research Collaboratory for Structural

Bioinformatics (RSCB) Protein Data Bank.

UVRR Spectra Acquisition

The UVRR instrument used to collect protein spectra has been previously
described (30). Briefly, the fourth harmonic of a tunable Ti:Sapphire laser
(Coherent Inc., Santa Clara, CA) was employed to generate an excitation
wavelength of 197 nm. The sample was circulated by aMinipuls2 peristaltic pump
(Gilson Inc., Middleton, WI) through two nitinol wires (Small Parts Inc., Miramar,
FL) to create a thin film under a nitrogen purge to remove ambient oxygen. The
temperature of the sample was held at 4°C in a water-jacketed reservoir (Mid
Rivers Glassblowing, Saint Charles, MO) using a bath recirculator (Isotemp
3016D, Fisher Scientific, Pittsburgh, PA). Raman scattering was collected in the
135° backscattering geometry and directed into a 1.2 m spectrometer (Horiba
Jobin Yvon Inc., Edison, NJ) equipped with a Symphony CCD detector, which
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was controlled by Synerjy software (Horiba Jobin Yvon Inc., Edison, NJ). Each
spectrum was the sum of 3 hours of signal collection. A small aliquot of a 1 M
sodium perchlorate solution was added to each sample, for a final concentration of
200 mM, as an internal intensity standard. All spectra were collected in triplicate
and calibrated using a standard cyclohexane spectrum (31, 32).

CD Spectra Acquisition

All samples used for UVRR analysis were additionally measured for their
corresponding CD spectra. An AVIV 62DS circular dichroism (Aviv Biomedical
Inc., Lakewood Township, NJ) spectrometer and a quartz cell with a 1 mm optical
path length (Hellman USA, Plainview, NY) were used to collect CD spectra. All
spectra were collected between 190 and 250 nm with a resolution of 0.1 nm at
room temperature. Every sample was measured five times with a scan speed of 1
nm/5 s and averaged. Each experiment was repeated in triplicate. Corresponding
background spectra were collected in the samemanner and subtracted from sample
spectra.

Data Processing

All data analyses were carried out in MATLAB (version 7.11, Mathworks,
Natick MA). Cosmic rays in the UVRR spectra were removed using an in-house
program (33), and the spectra were base-lined using the MATLAB curve-fitting
toolbox. Contributions to spectra from aromatic side chains were subtracted using
the phenyalanine band at 1003 cm-1 (F12) and tyrosine band at 853 cm-1 (Y1) as
previously described (13). Contributions from tryptophan were disregarded due to
its negligible intensity in deep-UVRR spectra (λex <210 nm). Areas that appeared
to be negative in the spectrum after subtraction of aromatic contribution were set to
zero and each resulting spectrum truncated to the 1266–1759 cm-1 spectral range
so that only the amide regions were used for modeling. For CD data, the mean
residue ellipticiity (ΘMRE) was calculated as previously described (30).

A MCR-ALS algorithm was used based on that outlined by Bro and
Sidiropoulous (34). MCR-ALS was selected because on average it performed
better in previous studies (13) compared to classical least squares and partial least
squares for spectral resolution and secondary structure prediction.

For both UVRR and CD, the triplicate spectra were compiled to obtain 27
individual spectra (Figure 3). The UVRR and CD data were then fused according
to the model in Figure 4 to give a single data matrix. To evaluate the potential
predictive ability of the MCR-ALS models, the root mean squared error of
calibration (RMSEC) was used (Equation 1).

In Equation 1, n is the number of samples, yi is the abundance of each secondary
structure element obtained from the (φ,ψ) dihedral angles as displayed in Figure 2
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and y ̂ι is the estimated value obtained from least squares regression of the resolved
composition profiles from the MCR-ALS algorithm.

Figure 3. UVRR (A) and CD (B) spectra used for multivariate analysis.

Results and Discussion

Protein Secondary Structure and UVRR and CD Spectra

Ideally, proteins with similar secondary structure contents should have similar
CD and UVRR spectra. However, while protein UVRR and CD spectra are highly
reproducible, proteins with similar secondary structural content can have very
different spectra. For instance, while carbonic anhydrase and chymotrypsinogen
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A have similar secondary structure distributions with high β-sheet and relatively
low helical contents (Figure 4), there is a clear difference in their CD spectra but
their UVRR spectra are overlapped. Bovine serum albumin and myoglobin also
have similar secondary structure distributions but with high helical contents and
no β-sheet structure; the CD spectra for both proteins are quite similar but in this
case their UVRR spectra, while similar in shape are clearly differing in overall
intensity.

Figure 4. CD (A and B) and UVRR (C and D) spectra of proteins with similar
secondary structure compositions. The shaded gray area about the lines
represent the standard deviation of three measurements at each variable.

It can be concluded that greater differences in the measured spectra of
proteins with similar structural compositions will be observed when the dominant
secondary structure type has a low relative signal intensity as compared to
the other types of secondary structure. Therefore, poorer prediction of these
structures is almost certain if only one technique is employed. In order to take
advantage of the predictive capabilities of each technique (CD and UVRR), a data
fusion approach was employed.

Effect of Preprocessing on Estimation of Composition Profiles

The UVRR and CD data were fused according to the model in Figure 5 to
yield a single data matrix. MCR-ALS was employed to resolve the underlying
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compositional and spectral profiles prior to preprocessing, and after normalization,
auto scaling and variance scaling (Figure 6).

Figure 5. Data fusion model for multivariate analysis for protein secondary
structure determination.

A 4-component model was employed because a 5-component model resulted
in poorer predictions of the three most prominent structures; helical, β-sheet and
PP-II and did not enable resolution of α- and 310-helical structure or parallel
and antiparallel structures. The composition profiles from MCR-ALS analysis
assigned to (helical (α- + 310-helices), β-sheet/strand, PP-II and unfolded
(everything else)) were regressed using the secondary structure compositions
obtained from the relative abundance of the (φ,ψ) dihedral angles of the peptide
backbone for each protein (Figure 2). The resultant regression model was then
used to repredict secondary structure of the test protein samples.

Prediction accuracies of about 5% can be achieved for either helical content
using CD or β-sheet content using UVRR (Figure 7). A comparison of the
RMSEC values versus each preprocessing method is summarized in Table 1.
When no preprocessing was employed, the results were similar to the use of
CD data alone (Table 1 and Figure 7). RMSEC of β-sheet is high when no
preprocessing is employed because the greater intensity of the CD spectra has
a greater influence on the model (Figure 6), and the UVRR information is lost.
Auto scaling of the fused data resulted in significantly higher RMSEC’s for
all secondary structure types. Normalization to unit variance did not improve
prediction of β-sheet structure (RMSEC = 40%) and appeared to worsen prediction
of helical structure, essentially doubling the RMSEC. Ultimately variance scaling
improved prediction of β-sheet structure (RMSEC = 5.4%) without much penalty
to the prediction of the other structures (Table 1 and Figure 7).
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Figure 6. Fused CD and UVRR spectra after application of each preprocessing
method.
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Figure 7. Root mean square error of calibration (RMSEC) for prediction of
protein secondary structure using CD, UVRR and fused CD-UVRR spectroscopic

data.

Table 1. Root mean square error of calibration (RMSEC) of MCR-ALS
model employing different preprocessing methods

Pre-processing method Helix Sheet PPII Unfolded

Unprocessed 5.7% 54.2% 8.7% 11.0%

Normalized 12.9% 40.2% 3.7% 8.0%

Auto-scaled 296.4% 57.0% 82.3% 27.1%

Variance-scaled 6.6% 5.4% 10.7% 8.6%

Conclusions
In this work, we have developed a new approach to protein secondary

structure determination by applying multivariate analysis to fused spectroscopic
data. The advantage to this approach where CD and UVRR data are fused over
individual analysis of both spectroscopic methods is that we can exploit the
selective predictive capabilities of each technique (helical structure for CD and
β-sheet structure for UVRR) and further improve predictions of other secondary
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structures including the PPII-type structure. We have also demonstrated that
the most appropriate preprocessing method prior to multivariate analysis is the
variance scaling method.

While helical structure prediction is improved using multivariate analysis of
the fused data, the limitation of separating α- and 310-helical structures still looms.
This is because both structures have very similar spectra both in CD and UVRR
hence making them statistically indistinguishable. Also, less prevalent structures
like turns and α-L, which occur in very small quantities, are not yet quantifiable
as their CD and UVRR spectra are not distinct enough. Expansion to include
other structurally sensitive techniques such as Raman optical activity or vibrational
circular dichroism may increase the number of quantifiable secondary structures.
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Chapter 14

Chemometric Modeling of Environmental
Impacts on the Chemical Composition and
Growth Dynamics of Microalgae Cultures

Frank Vogt*

Department of Chemistry, University of Tennessee, Knoxville,
Tennessee 37996, United States

*E-mail: fvogt@utk.edu

Via photosynthesis, ubiquitous marine microalgae cells
sequester large quantities of inorganic compounds (nutrients)
into biomass. Such a large-scale compound transformation
contributes for instance to counter-balancing anthropogenic
releases of the greenhouse gas CO2 and hence has considerable
environmental relevance. Since phytoplankton is a chemically
active system which adapts to its ambient conditions, the latter
determine the cells’ compound transformation performance
and the biomass production. For assessing phytoplankton’s
ecological impacts, interactions between cells and their
chemical and biological ambient conditions have been studied
by means of FTIR spectroscopy, imaging, and chemometric
modeling. Of particular interest is to investigate how the
nutrient availability and competing species’ presence determine
the chemical signature of the cells as well as the quantities
of resulting biomass. In order to gain a comprehensive
understanding of chemical interactions between cells and their
environments, innovations in chemometrics have been required.
It is demonstrated that chemometric ‘hard-modeling’ is a viable
route to derive interpretable models.

Introduction

With an increase of industrialization, the production of anthropogenic CO2 is
rising (1) and the fate of this high-impact greenhouse gas has become a serious

© 2015 American Chemical Society
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concern (2, 3). Research regarding CO2 sequestering is being directed towards
microorganisms because it has been estimated that about half of the global
primary carbon production is due to algal photosynthesis (4–10). Gaining a more
detailed understanding of these processes is especially crucial as there are first
indications that the carbon storage capacity of the oceans has started to diminish
(11). On the other hand, CO2(aq) produces carbonic acid which dissociates into
bicarbonate, a crucial algae nutrient, and H+ which lowers the ocean’s pH (12,
13). While microalgae-based CO2 assimilation is beneficial, lowered pH levels
have detrimental consequences on calcifying organisms such as corals (12,
13). Furthermore, phytoplankton’s sequestration of nitrogen compounds which
originate from over-fertilization in agricultural areas can cause harmful algae
blooms (14, 15). Thus, microalgal transformation of inorganic nutrients (C, N,
P, Fe, S (16–20)) into bioorganic materials has many ecological and economical
consequences.

Despite phytoplankton being an important player in large scale ecosystems,
a critical gap in knowledge exists due to the chemically complex relationship
between inorganic nutrients, microorganisms, and the consequences of these
compound transformations. It is anticipated that through chemometric modeling
more detailed knowledge about microalgae’s counterbalancing of anthropogenic
CO2, algae-mediated pH modifications of the ocean, and origins of harmful algal
blooming can be gained. These novel modeling methodologies will also gain
new insights in chemical and biological shifts of ecosystems and will open new
research directions in environmental chemistry, ecology, and marine biology.

Microalgae cells interact with their growing environment through nutrient
uptake and competition with each other for these nutrients. This study reports
that the chemical and biological parameters in an ecosystem determine algae’s
chemical composition and the quantity of phytoplankton. In return, phytoplankton,
being at the bottom of the foodweb, determine the biodiversity of higher organisms
based on their nutritional value and availability. Therefore, microalgae and their
interactions with marine ecosystems are linking environmental chemistry and
ecology. In this context, the following four aspects are relevant and have been
studied in this project; for these investigations, chemometric innovations have
been developed focusing on hard-modeling to ensure model interpretability:

• How does the nutrient availability determine the chemical composition
of microalgal biomass? (see ref. (18))

• How does the presence of nutrient competitors determine the chemical
composition of microalgal biomass? (see ref. (21))

• How does nutrient availability determine the growth dynamics and the
quantity of produced microalgal biomass? (see ref. (19, 20))

• How does the presence of nutrient competitors determine the growth
dynamics and the quantity of microalgal biomass? (see ref. (22, 23))

Experimental Preliminaries

Starting cultures for three sea water species, i.e. Dunaliella salina, Dunaliella
parva, and Nannochloropsis oculata, were obtained from The Culture Collection
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of Algae at the University of Texas, Austin. Cultures were inoculated in
“enriched seawater, artificial water” (ESAW) medium which contains the cells’
nutrients (24, 25). Such cultures are then exposed for multiple days to continuous
illumination while being maintained at 20°C (Figure 1, left). Increasing or
decreasing nutrient concentrations in the ESAWmedium was the chosen pathway
to simulate changing ambient conditions. In these studies, cultures were grown
under multiple series of inorganic carbon and nitrogen concentrations, the
two most important algae nutrients. Inorganic carbon concentrations were
adjusted via dissolving different amounts of sodium bicarbonate (NaHCO3)
into the growth medium; varying amounts of either sodium nitrate (NaNO3) or
ammonium chloride (NH4Cl) dissolved in ESAW served as nitrogen sources. In
order to generate starving, normal, and excess situations, the following carbon
concentrations were realized for these studies: 160µM, 1110µM, 2071µM (normal
condition), 3630µM, 5180µM, 6720µM, 8260µM; as nitrogen concentrations,
160µM, 350µM, 549 µM (normal condition), 873µM, 1280µM, 1470µM, and
1650µM were chosen. In order to incorporate unavoidable replicate-to-replicate
fluctuations into calibration models, five independent replicate cultures were
grown for each condition. Since the ambient conditions in these experiments
were known, the chemical signatures of the resulting biomass and its quantity
could be related to the ambient conditions.

Figure 1. (left picture, left Erlenmeyer) Culture of the sea water microalgae
species Dunaliella parva after inoculation when the cell concentration is low;
(left picture, right Erlenmeyer) the same culture after eight days of growth –

(right picture) potassium bromide plus dried algal biomass pressed into a ‘pellet’
from which FTIR transmission spectra were acquired. (F. Vogt, unpublished)

For harvesting microalgae cells, 1µL of Lugol’s solution (Sigma-Aldrich)
was added per 1mL of algal suspension in order to fix the cells in their current
state. Cells were then extracted from their solutions through centrifugation (4400
rpm) followed by washing the extracts twice with an isoosmotic solution (0.1 M)
of ammonium formate (Alfa Aesar) to minimize medium carryover. After gently
drying (4-5 days at 60˚C), the algae material was mixed with IR-transparent
KBr powder (0.6 weight % of algae) and pressed into a pellet (Figure 1, right
picture (26)). Due to its sensitivity to a large number of biologically relevant
analytes (27), FTIR spectroscopy has been found particularly useful for chemical
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analyses of microalgal biomass (18, 28–32). FTIR transmission spectra were
recorded (3500 – 950 cm-1, 4cm-1 resolution, 128 scans). The region 2700 –
1850 cm-1 was excluded as it comprised spectroscopic artifacts induced e.g.
by fluctuating atmospheric pCO2 within the spectrometer. As different species
have different chemical compositions, FTIR also enabled species classification
(33, 34). Measuring time and environment dependent production of biomass
has been based on time series of microscope images from which cell counts
and cell size distributions had been determined. For confirmation purposes,
hemocytometer-assisted cell counts were conducted as well.

Chemometrics Preliminaries

The research topics listed in the bullet list above could have been addressed by
conducting a series of experiments presented in the remainder of this manuscript.
However, probing a few isolated scenarios does not generate comprehensive
insights into the relation between environmental parameters and phytoplankton.
This limitation is underscored by the fact that many environmental parameters
are coupled and have a nonlinear impact on the biomass (18). In order to gain a
fundamental understanding of the key parameters and the driving forces behind
environment ↔ phytoplankton interactions, chemometric models are required.
For this purpose, chemometric ‘hard-modeling’ is a more promising approach
than the ubiquitous ‘soft-modeling’ which empirically explains structures in data
sets (35). Hard-modeling is based on theoretical considerations which then lead
to model equations that explicitly describe the chemical, physical, or biological
functionalities of a system. Computing scenario(environment)-specific values for
such chemically interpretable parameters (e.g. via least-squares) then deduces
information regarding a system’s chemical, physical, or biological state. However,
hard-modeling faces more challenges than soft-modeling: (i) Many relevant
systems feature a considerable level of complexity which must be properly
incorporated into hard-models. (ii) Often, the derived model equation requires
applying nonlinear least-squares which imposes practical challenges (36). On the
other hand, even when a nonlinear hard-model equation has to be approximated
as a (multivariate) Taylor expansion, one has to keep in mind that the polynomial
parameters still carry explicit chemical or physical information (37). In addition
to gaining new, fundamental knowledge about a chemical/physical/biological
system, hard-modeling can directly take advantage of additional chemical
information by expressing such insights as regression constraints (38). Typical
examples of extra information are non-negativity of concentrations, concentration
ratios, realistic concentration ranges, sum parameters, etc. which are readily
implementable in hard-models whereas their translation into latent variables
and/or scores is less straightforward.
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Impacts of Nutrient Availability on the Chemical Composition
of Microalgae

It has been observed that microalgae are actively adapting to their ambience,
namely their nutrient situation which in turn causes their spectroscopic signature to
change. From an ecological perspective, investigating this will provide knowledge
regarding the cells’ nutrient utilization and thus their compound transformation
capabilities. From an analytical chemistry perspective, this is of interest because
a reproducible relation between environment and microalgae’s chemical signature
enables innovations in environmental monitoring based on microalgae acting as
in-situ sensors.

Ref. (18) has focused on this idea and has demonstrated that the cells’
chemical responses to environmental shifts are reproducible, albeit governed
by nonlinear responses to multiple, cross-linked environmental parameters.
Therefore, conventional, linear multivariate regression (40) (MLR) is not
applicable for quantitative analyses of such systems. More robust techniques such
as Principal Component Regression (40, 41) (PCR) and Partial Least-Squares
(42, 43) (PLS) also have limitations; they can approximate nonlinear behavior to
a certain extent (44) but cannot -due to their empirical nature- shed light on which
ambient parameters are linked and how. The multivariate Response Surface (45,
46) methodology on the other hand introduces higher-order predictor variables
and derives insights in their coupling. However, Response Surfaces are based on
Inverse Least Squares (42) (ILS) which generally involves a rather large number
(W) of predictor variables to explain a small number of response variables (N).
While a large number of adjustable model parameters ensures a high robustness
towards unknown signal features, ILS requires K ≥ W ≥ N calibration samples
which for large N can render this approach unfeasible. This is particularly true for
measurement techniques such as optical spectroscopy which produce collinear
data sets (N large).

In order to investigate nonlinear chemical systems with coupled predictors
while requiring a reasonable number of calibration samples, the novel data
modeling technique ‘Predictor Surfaces’ has been developed (18). Predictor
Surfaces have been based on multivariate Taylor expansions up to order P and
therefore enable an interpretation and assessment of coupled and higher-order
predictor variables (37). While Response Surfaces map measured data (e.g.
spectra) onto ambient parameters and hence introduce a problematically high
number of model parameters, Predictor Surfaces explain measured data (spectra)
in terms of a few (Q) predictor variables (ambient parameters). Predictor Surfaces
utilize model equationsYβ(x) ( 1 ) which contain (here) spectroscopic information
and predictor variables x ( 2 ) which are (here) concentrations of various nutrients.
As will be shown below, coupling of multiple predictors reflect that microalgae
cells require a certain nutrient mix to thrive.
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Thus, a measured spectrum covering N
wavenumber positions equals the model plus a vector δ
containing measurement errors (or more accurately: any signal features not
explained by the model). For determining which of the numerous combinations
of x and which P are relevant, Analysis of Variance (47, 48) (ANOVA) has
been applied. The ‘extra-sum-of-squares principle’ (39) has been found to be a
particularly straightforward implementation of ANOVA.

Prior to utilizing the model ( 1 ) to predict chemical parameters in the cells’
growing environment, a calibration has to be performed during which is
determined. In the given application, numerous algae cultures were grown under
series of nutrient concentrations x followd by measuring FTIR spectra y of dried
algae material. Since any nonlinearity between response and predictor variables
has been built into x ( 2 ), equation ( 1 ) is linear in the model parameters and
hence the calibration of Predictor Surfaces can be done by means of a multivariate
least-squares regression (39):

The only difference between a conventional MLR calibration and the
calibration of Predictor Surfaces ( 3 ) is that for the latter the Q predictor variables

of the kth calibration sample need to be compiled into a vector

( 2 ) prior to using it as the kth column in ( 3 ).
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Figure 2. (A) This Prediction Surface ( 1 ) with P = 3 describes how
the mid-IR signature of the microalgae species Dunaliella parva changes as a
function of the bicarbonate concentration in the growing environment. The black
spectrum y(N×1) was obtained from a Dunaliella parva sample grown under an
unknown bicarbonate concentration; the latter has been determined by fitting
the spectrum onto the Predictor Surface. (Derived work with permission from
Elsevier). (B) this ‘slice’ of a Predictor Hypersurface (Q = 2) describes how the
biomass’ absorbance at 1101cm-1 changes with shifts in the concentrations of

two nutrients, i.e. and

317

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
01

4

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 

http://pubsdc3.acs.org/action/showImage?doi=10.1021/bk-2015-1199.ch014&iName=master.img-011.jpg&w=174&h=370


Figure 2(A) depicts a Predictor Surface obtained for P = 3 which
describes how the bicarbonate concentration as a sole predictor
variable determines the wavenumber dependent mid-IR absorbances ofDunaliella
parva biomass. For Q > 1, a Predictor Surface becomes a Predictor Hypersurface
which, in the Q = 2 case, can be plotted one wavenumber at a time. As shown
in Figure 2(B), the given portion of the Predictor Hypersurface, the ‘1101cm-1

slice’, describes a nonlinear relation between two nutrient concentrations and the
cells’ IR-absorbance at 1101cm-1. Obviously the cells produce (49) IR-absorbing
material dependent on the combination of and . Thus, Predictor
Hypersurfaces are capable of modeling highly nonlinear chemical systems
and enable insights into the biological consequences of the cells’ chemical
environment.

In order to predict xunk, an unknown response vector yunk (black spectrum
in Figure 2(A)) is fitted to the calibration model ( 1 ). Technically, a
solution for xunk could be estimated via another linear multivariate least-squares

regression (MLR) utilizing ( 3 ), i.e.: . However,

this should not be utilized because it would consider each elements of
( 2 ) as an independent predictor variable. This is clearly not the case since xunk
contains W elements which are various products of fewer predictor variables
xq=1,...Q<W. Consequently, searching a solution in a W-dimensional space leads
most likely to a chemically meaningless result x̂ ̂ûnk. To avoid this, x̂ ̂ûnk is derived
via nonlinear least-squares regression via minimizing the sum of squared errors:

.
The minimum of the SSE is characterized by ( 4 ) in which introduces
nonlinearities. Thus, nonlinear least-squares has been employed to derive :

It is important to remember that spectra were not acquired from concentration
containing samples (i.e. ESAW media) but from algae which reflect impacts
of environmental conditions. Thus, this application is based on an indirect
measurement and the cells can be interpreted as ‘measurement mediators’. This
approach together with novel chemometric methodologies enables innovations in
environmental monitoring.

For quantitative experiments, two sets of samples have been prepared – one
for calibration, i.e. for deriving a Predictor Surfaces ( 3 ), and one for assessing its
prediction power. Both data sets comprised of completely independent samples,
i.e. different nutrient situations were included in the calibration and the test set.
When preparing calibration samples for the first test, the concentration of one
nutrient (Q = 1) was varied whereas all other nutrients were kept at the standard
ESAW concentrations (24, 25). For deriving the Predictor Surface shown in
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Figure 2(A), bicarbonate at concentrations of 160µM, 2071µM, 5180µM, and
8260µM were used; bicarbonate concentrations of 1110µM, 3630µM, and
6720µM were included into the test set. With four different values for the sole
predictor variable contained in the calibration sets, P = 3 is the highest
polynomial order ( 1 ) that should be realized. Therefore, three Predictor Surfaces
were built for P = 1, 2, and 3 along with a Principal Component Regression (PCR)
for comparison purposes. Figure 3 compares predicted HCO3- concentrations
in the growing medium as calculated with the three different Predictor Surfaces
and the PCR to the ‘true’ values. The dashed lines in both graphs indicate where
predicted equal true concentrations. Obviously, the P = 1 Predictor Surface,
i.e. a standard linear MLR, is unable to reliably or even reproducibly predict
the bicarbonate level in the growing medium. This MLR failure is due to the
inappropriateness of linear models for nonlinear data. PCR performed somewhat
better – apparently, an elevated number of incorporated principal components (6
>Q = 1)) helped to empirically describe nonlinear relations between predictor and
response variables. When expanding the Predictor Surface models to quadratic
(P = 2) and to cubic models (P = 3), the prediction quality considerably improves,
with P = 3 being most precise and reproducible.

Figure 3. Comparing the prediction power of the novel nonlinear Predictor
Surfaces (P = 1 (i.e. MLR), 2, and 3) versus a conventional Principal Component

Regression (PCR). Derived work with permission from Elsevier

Impacts of Nutrient Competitors on the Chemical Composition
of Microalgae

In the previous section, it has been demonstrated that microalgal biomass
chemically adapts to its chemical environment. It has also been hypothesized that
the microalgal species composition in a culture (‘biological environment’) plays
a role in the biomass’ chemical composition (21). The reasoning behind this
hypothesis is that different species mutually change their chemical environment
through nutrient uptake. The following experiments were conducted to investigate
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impacts due to nutrient competition: Two microalgae species, Dunaliella parva
and Nannochlorpsis oculata, were cultured individually as well as in mixture.
From all three culture types (2x single, 1x mix), multiple samples were prepared
as outlined above followed by recording of FTIR spectra. By keeping all other
parameters in particular the nutrient concentrations the same, any significant
spectroscopic differences between single-species cultures and mixed-species
cultures is attributed to competition effects. In order to detect any significant
spectroscopic modifications among natural replicate-to-replicate fluctuations,
a t-testing procedure has been performed (95% confidence): From replicate
spectra of a certain culture type (single- or mixed-species), mean spectra and their
wavenumber dependent standard deviations were computed (Figure 4, top). Said
means and their standard deviations were then t-tested at every single wavenumber
position. However, t-testing of a single-species versus a mixed-species culture’s
spectrum cannot discriminate features originating from competition-induced
chemical changes and features of the mixture’s other species. To overcome this,
spectroscopic features of a mixed culture were compared to both single-species
cultures contained in the mix. Every single t-test determines one of three possible
outcomes: (i) there is no significant difference between the single and the mixed
culture, (ii) the single species has a lower absorbance than the mixture, or (iii)
the single species has a higher absorbance than the mixture. Encoded in these
two t-tests -or more specifically within their 32 = 9 possible outcomes- are two
chemically interesting cases: (i) Bands in the mixture spectrum are observed
which have not been present in any single-species spectrum. (ii) Bands which are
contained in the single-species spectra are missing in the mixture’s spectrum. The
remaining seven ‘situations’ are listed in Table 1 and depicted in Figure 4 (top,
dark yellow curve). This procedure had been performed for seven bicarbonate
concentrations and composed into 2D ‘situation planes’ (Figure 4, bottom). In
such situation planes, the x-axis covers the concentration c of a specific nutrient
and the y-axis runs along the wavenumber υ ̃. Black rectangles in these c − υ̃
planes indicate under what nutrient concentration c a significant spectroscopic
change has been found at which wavenumber υ̃. White areas indicate absence
of significant spectroscopic changes for that particular ‘situation #’. Further
investigations are required to interpret the chemical signatures found within
binary-species cultures that cannot be explained by a combination of the two
individual species. For orientation, situation #8 in the top graph has been pointed
out in the corresponding situation panel below. It was also found that situation
#0 (= no competition-induced biomass modification) is the most common one.
Please see ref. (21) for a presentation of more extensive results.
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Figure 4. (top) FTIR spectra acquired from algae cultures (shaded area =
errorbars from replicates) of Nannochloropsis oculata and Dunaliella parva
when cultured separately (black and red) and in mixture (blue), respectively
(standard conditions: 2071µM [HCO3-] and 549µM [NO3-]); statistically

significant differences between spectra from mixed cultures versus a combination
of singly-grown samples were found and assigned a ‘situation number’ (see Table
1); (bottom) concentration dependency of ‘situation 8’ occurrences (black areas)
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Table 1. Nine possible outcomes (situations) for comparing spectra of two single species versus their binary species mixtures (Figure
4, top); these situations are determined at every wavenumber position separately
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Impacts of Nutrient Availability and Nutrient Competitors on
the Growth Dynamics of Microalgae

In the preceding section, it has been presented that microalgae develop
biomass of different chemical composition depending on nutrient availability
and the presence of nutrient competitors. Based on these findings, it has been
hypothesized that the amount of produced phytoplankton and the production
dynamics are also influenced by nutrient availability and competition. Measuring
biomass amounts has been based on analyses of images acquired from cell
cultures. From microscope images, cell counts and cell size distributions were
determined. Recording cell counts over the course of several days gained insights
into growth dynamics. Performing such experiments under different nutrient
conditions as well as in presence or absence of competitors enabled deducing
impacts of these ambient parameters on the biomass production.

Monitoring Cell Culture Growth by Image Analyses

Measuring cell numbers and their size distributions can either be done by
means of flow cytometry or based on image analyses recently developed (19).
While both experimental techniques facilitate in-situ, contact free analyses of large
numbers of cells, imaging has been chosen as it introduces less sample handling/
disturbance plus it requires less equipment and is thus more widely applicable.

A digital image can be depicted as a 3D plot in which x and y represent the
spatial dimensions and z the light intensity at a given pixel (Figure 5 (A) vs. (B)).
In transmission microscopy, a homogenous illumination of the sample has been
described by a constant background light level a0 onto which the cells’ shadows
are superimposed. Each cell’s shadow has been modeled as a down-pointing 2D
Gaussian Figure 5 (C)) which not only represents the data well but also enables
a straightforward measure (50) of the cell’s cross section via the 2D-Gaussians
widths σx and σy. Assuming an elliptic cell cross section, cell sizes were calculated
as π·σx·σy. However, since randomly oriented, non-spherical, 3-dimensional
cells were analyzed by a 2D imaging technique, a size distribution rather than
one common cell size was found (Figure 5 (D)). As an initial proof-of-concept
(19), all three microalgae species were cultured under various concentrations of
bicarbonate, ammonium, and nitrate. As expected, the two Dunaliellas are larger
than Nannocloropsis oculata and D. salina was found to be slightly larger than
D. parva.
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Figure 5. (A) transmission microscopy image of Dunaliella salina cells; (B)
close-up 3D representation of the cells’ shadows (z-axis = light intensity); (C)
nonlinear least-squares fits (= 2D Gaussians) of the shadows from which the
cells’ dimensions in x and y direction are determined via the 2D-Gaussians’
‘standard deviations’; (D) cell species can be discriminated based on their size

distribution. Derived work with permission from John Wiley and Sons

It was also of interest to assess whether these size distributions reflect in
a quantifiable way to determine the nutrient situation of the corresponding cell
culture. To build such quantitative calibration models, linear PLS and nonlinear
Predictor Surfaces (18) have been employed utilizing size distributions in an
equivalent way to FTIR spectra in Figure 2. It was found (19) that the size
distribution of N. oculata reflects the concentrations of all three nutrients (HCO3-,
NO3-, and NH4+). The size distributions of the two Dunaliellas could only predict
the two nitrogen containing nutrients but at a higher precision than N. oculata. In
general, nonlinear Predictor Surfaces achieved a somewhat higher precision than
MLR and PCR (see Figure 3) presumably because of fairly strong nonlinearities
between size distribution and nutrient concentration.

In a subsequent study (20), these chemometric methodologies were
augmented in order to mathematically rather than empirically describe the impact
of multiple nutrients. This established a novel chemometric tool for investigating
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nonlinear and interrelated impacts of multiple ambient chemical parameters on
the cells’ physical parameters. Advancing chemometrics along these lines will
open new research opportunities in biology, ecology, and medicine to study cells’
responses to shifts in their ambient conditions.

Modeling Amounts of Produced Biomass

The previous section discussed the impact of ambient chemical parameters
(nutrients) on phytoplankton’s size distribution. It also has been presented that
nutrient competitors impact microalgae’s chemical composition (Figure 4). Based
on these findings, it has been hypothesized that nutrient competitors may also
influence the cell size distributions. Such a competition scenario is given in natural
ecosystems and –if found relevant- would need to be considered when assessing
phytoplankton’s sequestration of inorganic compounds into biomass.

For assessing competition impacts on biomass production namely cell
concentrations and cell size distributions, the following approach had been chosen
(22, 23): Cultures of Nannochloropsis oculata and Dunaliella parva were grown
individually as well as in binary species mixtures. Providing the same nutrient
conditions to both culture types (single vs. mixed) followed by comparing
the cell numbers and size distributions, light was shed onto consequences of
nutrient competition. For these investigations, six different carbon concentrations
(1110µM, 2071µM, 3630µM, 5180µM, 6720µM, and 8260µM) were supplied to
cultures via sodium bicarbonate dissolved into the culture media; five nitrogen
concentrations (350µM, 549µM, 873µM, 1280µM, and 1470µM) were provided
either via ammonium chloride or sodium nitrate. Two different nitrogen sources
were incorporated to test for impacts of the nitrogen source. To take the naturally
occurring variability in biological materials into account, five replicate cultures
were grown for each culture per nutrient condition.

The image analysis method presented before (19) (Figure 5 (A)-(C)) had
been employed to acquire cell size distributions, S, from single-species and
binary-species cultures. After composing the measured cell sizes found in a
given culture into the discrete bins of a histogram, Poisson-shaped distributions
have been observed (Figure 6 (A)) (22). These distributions peak at the
species-dependent, average cell size Sλ which is covered by bin number λ. While
a Poisson distribution p(k) describes the probability for a certain cell to fall into
the kth bin, λ and thus Sλ are unknown in this application. However, determining
λ is of central interest here as competition induced changes in the cell sizes
are reflected in λ. Thus, λ is derived by fitting a ‘Poisson-shaped’ function

to cell size histograms. For regression purposes, λ
is handled as a continuous fit parameter rather than the integer bin number.
Furthermore, an additional fit parameter, A, has been introduced above to describe
the maximum height of a histogram which is not normalized like a Poisson
distribution.
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Figure 6. (A) size distribution of two mono-species cultures (black, red) in
comparison to a mixed-species cultures (blue); (B) statistically significant
competition impacts on cell size distributions. (see text; reprinted with

permission from John Wiley and Sons (51))

If M species are present in a culture, this equation needs to be modified to
reflect that a cell size distribution is a superposition ofM Poisson-shaped functions:

. Furthermore, from a practical perspective, M
= 20 had been chosen (i.e. >#species) to model out-of-focus cells and randomly
oriented, non-spherical cells. Figure 6 (A) shows the resulting fit curves as solid
lines.

Under identical nutrient conditions, competition impacts are manifested
in differences between a histogram SN.o.&D.p.(k) obtained from a binary-species
culture and a linear combination of the two single-species histograms SN.o.(k) and
SD.p.(k). Hence, testing whether the rank of a three-column matrix containing
SN.o., SD.p., and SN.o.&D.p. has rank two or three would theoretically test for absence
or presence of competition impacts on the cell size distribution. However, this
approach faces two challenges, the difficulty to reliably discriminate between rank
two and three and to determine how the size distribution has shifted. Furthermore,
noise in the histograms mandates a statistical assessment of size distributions. To
overcome the aforementioned limitations, a multivariate least-squares fit solving

for the two weight factors, wN.o. and wD.p., has been chosen. Equation ( 5 )
expresses the mixed-species size distribution as a combination of the individual
species size distributions. The reconstructed mix-species size distribution (Figure

6 (B)), i.e. , then describes how much of the

326

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 O

ct
ob

er
 7

, 2
01

5 
| d

oi
: 1

0.
10

21
/b

k-
20

15
-1

19
9.

ch
01

4

In 40 Years of Chemometrics – From Bruce Kowalski to the Future; Lavine, et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2015. 

http://pubsdc3.acs.org/action/showImage?doi=10.1021/bk-2015-1199.ch014&iName=master.img-032.jpg&w=297&h=102
http://pubsdc3.acs.org/action/showImage?doi=10.1021/bk-2015-1199.ch014&iName=master.img-034.png&w=284&h=56
http://pubsdc3.acs.org/action/showImage?doi=10.1021/bk-2015-1199.ch014&iName=master.img-035.png&w=126&h=39


measured mix-species size distribution can be explained in
terms of the single-species distributions. Any differences between measured
mix-species and its reconstruction using single-species distributions are then
assigned to competition impacts.

As the measured histograms were determined from replicate cultures,
errorbars were available for each histogram bin (see Figure 6 (B)). Performing
bin-wise t-tests (95% confidence) of the mean measured histograms versus
their reconstructed counterparts reveals whether these two histograms’ bins
contain significantly different counts. Based on t-test results, the nature of
competition-induced shifts in cell size distributions can be determined. In Figure
6 (B), a so-called t-histogram is shown that reflects the outcomes of said t-tests: a
value of 0 in this t-histogram indicates no significant difference between measured
and reconstructed histogram. A positive value in the t-histogram indicates that
the measured histogram contains significantly more counts in a given bin than
its reconstruction. A negative value means that the reconstruction has more
counts in that bin than experimentally determined. The example shown in Figure
6 (B) therefore indicates that, under 2071µM bicarbonate, the mixed-culture’s
size distribution (black) is shifted to smaller cell sizes than expected due to the
reconstruction (red) made from single-species size distributions. Competition
impacts in different nutrient situations are presented in ref. (22). These results
clearly indicate that the cell size distribution is impacted by nutrient competition
and suggest further studies to determine the physiological origin of these cell size
modifications.

Modeling a Culture’s Growth Dynamics

Investigating the extent to which the dynamics of biomass production
is related to nutrient availability and/or nutrient competitors is of additional
interest as this will determine the microalgal biodiversity in an ecosystem.
Since all species have somewhat different nutrient allocation and utilization
characteristics, this will also impact an ecosystem’s overall transformation of
inorganic compounds into biomass. Investigating these topics has been based
on a culture’s time-dependent cell concentration. Such growth curves (22, 23)
describe the cell concentration (52) y(t) ( 6 ) in a culture which had been started at
t = t0 by inoculating y0 cells per mL into the culturing medium. A culture’s growth
dynamics is described by its growth rate s which is inversely proportional to the
time span τ within which the cell concentration doubles. Eventually, the growth
slows down and asymptotically reaches a maximum cell concentration ymax (see
appendix in ref. (22)). Figure 7 (A) and (B) depict two microalgal growth curves
y(t) with s and ymax being clearly species dependent.
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Figure 7. (A) & (B) a given growing environment can produce a species-specific
maximum cell concentration ymax at a species-specific growth rate s ( 6 ); (C)
maximum cell concentration ymax and (D) and growth rate s are clearly impacted
by introducing a nutrient competitor; inset in (C): accurate cell concentrations
were obtained with a hemocytometer under a 10x microscope. (reprinted with

permission from John Wiley and Sons)

In order to measure s along with ymax and y0, cell counts y(t) have been
obtained on multiple days t via hemocytometer counting (Figure 7 (C) inset) to
which equation ( 6 ) has been fitted. While ymax is not related to growth dynamics,
it represents valuable information for assessing the amount of biomass produced
by a culture (see previous section ‘Modeling Amounts of Produced Biomass’).
From single-species cultures of Nannochloropsis oculata (N.o.) and Dunaliella
parva (D.p.), sN.o.(single) and sD.p.(single) have been determined for all nutrient
situations listed above and for all replicate cultures (22). These growth rates were
then compared to their counterparts derived from binary-species cultures (53),
i.e. sN.o.(mix), and sN.o.(single). Comparing sN.o.(single) to sN.o.(mix) as well as sD.p.(single)
to sD.p.(mix) as obtained from otherwise identical culturing conditions reveals
impacts of nutrient competition onto phytoplankton growth dynamics. Figure
7 (D) depicts one selected example of growth rates as derived from replicated
mixed-species cultures versus replicated single-species cultures’ values. A
45°-line (gray dashed) has been included to indicate where s(single) = s(mix). If a
data point falls below this 45°-line, s(single) > s(mix) indicating the growth rate is
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reduced in species mixtures compared to the single-species culture containing the
same nutrient situation. If a data point is above the 45°-line, the growth rate is
enhanced in these mixtures. The blue line is a linear regression line of s(mix) versus
s(single) under the constraint that the regression function passes through the origin.
Such fit lines’ slopes then measure how the growth rates of the mixture and the
single-cell cultures deviate. In the given example, the impact of a competing
species on the growth rate is considerable.

From the same data and the same fit ( 6 ), a comparison of the maximum
cell concentration ymax has been performed in an equivalent manner. Figure 7 (C)
shows one representative example of versus together with
gray, dashed 45°-lines and a red regression line constrained to pass through the
graph’s origin. In the example shown here, the species’ maximum concentration
has been massively reduced due to the presence of a nutrient competitor. On the
other hand, an equivalent analysis for said competitor revealed (22) (not shown
here) that that species’ ymax has only been altered minutely. Therefore, one species
outcompetes the other and drives the biodiversity to a different equilibrium than
one would expect based on single species’ growth curves.

For these investigations, microalgae cells on a cell culture level had been
considered. In order to better understand what physiological origins these
competition impacts have, ref. (23) describes this scenario from a single-cell
level based on a species’ nutrient uptake characteristics. These studies also
demonstrate how hard-modeling chemometrics enables in-depth investigations of
complex chemical/biological/ecological systems (35).

Conclusions

This study reports on innovations in chemical sensing with the overarching
goal to investigate chemical interactions between microalgae cells and their
chemical and biological environment. Such investigations aim at increasing the
understanding of the key parameters that drive phytoplankton based compound
transformation from inorganics dissolved in marine environments into biomass.
Due to the interrelation among environmental parameters and the impacts
they leave on algal biomass, novel chemometrics modeling strategies are
mandatory and have been developed in the course of this research. In particular,
hard-modeling was deemed to be highly advantageous compared to conventional
soft-modeling because only the former enables a chemical interpretation of
the models. This interpretability then increases the understanding of chemical
mechanisms at the interface between chemistry in the ambience and biological
samples. Furthermore, modifications of the biomass’ chemical signature could
be related to nutrient concentrations in the cells’ culturing environment and thus
enable novel approaches for embedded chemical sensors (=cells). Regarding the
chemical composition of microalgae, it was found that the nutrient mix rather than
the concentrations of individual nutrients is of fundamental importance. It was
also demonstrated that the presence of multiple microalgae species considerably
changes the picture. One interpretation of this effect is that different species
through nutrient uptake mutually modify their chemical environment.
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The production of biomass has been investigated as a function of microalgae’s
chemical and biological environment. It was found that the chemical environment
alters the cell size distribution so strongly that such distributions reflect ambient
conditions in a quantifiable way. More striking results were achieved by
demonstrating the impact of nutrient competitions on biomass production
dynamics and efficiency. This will enable studies of biodiversity from an
environmental chemistry perspective and thus can bridge the gap between
chemistry and ecology.

Overall, results of this study demonstrates that chemical analyses of life
biological samples cannot be performed without considering the samples’
chemical and biological environment. In the author’s opinion, nonlinear
(hard)modeling of interactions between samples and their environment is an
emerging field in chemometrics.
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presents details of this fitting procedure including expanding the model
equation to multiple cells.

51. Note: Theoretically, the originally measured histograms could have been
used instead of histograms decomposed into Poisson-shaped functions (
5 ). However, the considerable noise level in the histograms would have
obliterated clear trends among size changes (see supplemental material in
ref. (22)).

52. Note: The time dependent number of microalgae cells in a culture, y(t) in (
6 ), is not to be confused with the spectrum y(N×1) (black curve in Figure 2)
acquired from a cell culture.

53. Note: Since the chosen species have clearly different sizes (Figure 5 (D),
Figure 6 (A)), a visual discrimination while hemocytometer-based cell
counting of both species contained in a mixture was feasible.
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